
Not All Layers Are Equal: A Layer-Wise Adaptive Approach
Toward Large-Scale DNN Training

Yunyong Ko
Hanyang University

Seoul, Republic of Korea
koyunyong@hanyang.ac.kr

Dongwon Lee
The Pennsylvania State University

University Park, PA, USA
dongwon@psu.edu

Sang-Wook Kim∗

Hanyang University
Seoul, Republic of Korea
wook@hanyang.ac.kr

ABSTRACT
A large-batch training with data parallelism is a widely adopted ap-
proach to efficiently train a large deep neural network (DNN) model.
Large-batch training, however, often suffers from the problem of
the model quality degradation because of its fewer iterations. To
alleviate this problem, in general, learning rate (lr) scaling methods
have been applied, which increases the learning rate to make an
update larger at each iteration. Unfortunately, however, we observe
that large-batch training with state-of-the-art lr scaling methods
still often degrade the model quality when a batch size crosses a
specific limit, rendering such lr methods less useful. To this phenom-
enon, we hypothesize that existing lr scaling methods overlook
the subtle but important differences across “layers" in training,
which results in the degradation of the overall model quality. From
this hypothesis, we propose a novel approach (LENA) toward the
learning rate scaling for large-scale DNN training, employing: (1) a
layer-wise adaptive lr scaling to adjust lr for each layer individually,
and (2) a layer-wise state-aware warm-up to track the state of the
training for each layer and finish its warm-up automatically. The
comprehensive evaluation with variations of batch sizes demon-
strates that LENA achieves the target accuracy (i.e., the accuracy
of single-worker training): (1) within the fewest iterations across
different batch sizes (up to 45.2% fewer iterations and 44.7% shorter
time than the existing state-of-the-art method), and (2) for training
very large-batch sizes, surpassing the limits of all baselines.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

KEYWORDS
large batch training, learning rate scaling, layer-wise approach
ACM Reference Format:
Yunyong Ko, Dongwon Lee, and Sang-Wook Kim. 2022. Not All Layers
Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN
Training. In Proceedings of the ACM Web Conference 2022 (WWW ’22), April
25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3485447.3511989
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3511989

𝑔"
�̅�𝑔$

�̅�

𝑥$
𝑥"

𝑥&

Forward
Backward
Update

Worker1 Forward
Backward
Update

Worker2 Forward
Backward
Update

Worker3

𝑔&
�̅� ← Average (𝑔$, 𝑔", 𝑔&)

�̅�
�̅�

Figure 1: The architecture of a large-batch trainingwith data
parallelism.

1 INTRODUCTION
With the recent breakthroughs in deep learning (DL) [5, 6, 11, 19,
27, 34, 36], many web-based applications have adopted DL tech-
niques to improve the quality of their services. In order for web-
based applications to continuously provide high-quality services,
it is important to efficiently learn a large amount of “web-scale"
data generated from users [31, 39]. Training a large deep neural
network (DNN) model with web-scale data, however, is very time-
consuming, often taking several days or weeks despite using compu-
tational accelerators such as GPUs [5, 11, 36]. To speed up such train-
ing, a large-batch training with data parallelism has been widely
adopted [1, 2, 7, 8, 12, 14, 23, 32, 37, 38, 44–46]. Figure 1 shows
the process of a large-batch training with data parallelism, where
a large amount of data (i.e., large batch) is split and processed by
multiple workers at once. Then, the gradients computed by workers
are averaged and used to update a DNNmodel. Thus, as the number
of workers increases, the amount of data processed at each itera-
tion increases proportionally, thereby reducing the total number of
iterations (and time) in training.

However, if the reduction of the iterations is too severe for a
model to converge, it is likely to degrade the quality of the learned
model [12, 17, 28]. This problem may become more serious as the
batch size increases and the number of iterations decreases, thereby
having fewer chances to update gradients toward convergence.
As such, it should be addressed to fully exploit the gain of large-
batch training. To compensate for fewer iterations in large-batch
training, in general, learning rate (lr) scaling methods have been
applied [12, 20, 41–43]. lr scaling increases the learning rate to boost
each gradient update to be larger. For example, the linear lr scaling
method [12], the most widely used one, increases lr linearly as the
batch size increases. Although the linear scaling method was suc-
cessfully applied in several tasks (e.g., 8k of a batch size in ResNet-50
training on ImageNet-1k), it often causes significant degradation of
the model quality or even divergence in larger scales [12, 40, 43].

On the other hand, some prior works [20, 21, 29, 40] take into
account the variance of gradients in large-batch training. In [29, 40],

1851

https://doi.org/10.1145/3485447.3511989
https://doi.org/10.1145/3485447.3511989

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yunyong Ko, Dongwon Lee, & Sang-Wook Kim

Figure 2: The relationship between the model quality and
gradient variance in large-batch training with AdaScale [20]
(B indicates the total batch size).

it is shown that the efficiency of scaling large-batch training im-
proves when the variance of gradients is higher, which indicates
that the variance of gradients can be an important factor to be con-
sidered for reliably increasing the scale of large-batch training. In
particular, AdaScale [20], a state-of-the-art lr scaling method, adap-
tively adjusts lr depending on the variance of gradients computed
by workers at each iteration. For instance, it increases lr almost
linearly under high gradient variance, but rarely increases lr under
low gradient variance. In this way, AdaScale successfully achieved
the high quality of models across many large-batch sizes in various
machine learning tasks, outperforming the linear scaling method.
Despite its success, however, our preliminary experiment showed
that the quality of the learned model by AdaScale still degraded
when the batch size crossed a specific limit (e.g., 16k of the batch
size in the training of ResNet-18 on CIFAR-10, see Figure 2(a)).

Motivated from this phenomenon, we take one step further for
understanding the meaning of the gradient variance in large-batch
training. Generally, the gradient variance tends to increase as the
model gets trained (see Figure 2(b)), which indicates that the gradi-
ents computed from different batches of data are becoming more
diverse from each other. This tendency implies that the information
that the model aims to train from each data batch becomes more
unique as the model gets trained better. Therefore, we can estimate
how well the current model has been trained so far (i.e., state of
the training) by using the variance of gradients at each iteration.
Figure 2 shows the relationship between the model quality and the
gradient variance for training with different large-batch sizes.

On the other hand, the parameters of a DNN model have their
own role and the information to capture from data is not equal
across layers [3, 4]. Therefore, we hypothesize that “during the
training of a DNN model, the state of the training can vary across
layers". To verify our hypothesis, we conducted another preliminary
experiment for comparing the gradient variances of parameters
per layer, and observed that the gradient variance tends to vary
across layers and such a difference grows as the batch size gets larger
(see Figure 3 for details). Based on this observation, we posit that
the potential cause of the model quality degradation in existing lr
scaling methods is to overlook the subtle but important differences
across layers in training. Then, for addressing this issue, we propose
a novel approach toward lr scaling for large-scale DNN training,
named as Layer-wise adaptivE learning rate scaliNg and wArm-
up (LENA), that employs (1) a layer-wise adaptive lr scaling that

adjusts lr for each layer individually, depending on its gradient
variance, and (2) a layer-wise state-aware warm-up that tracks
the training state for each layer and determines its endpoint of
warm-up automatically.

Through comprehensive experiments, we demonstrate that LENA
always achieves the target accuracy (i.e., the accuracy of single-
worker training): (1) within the fewest iterations across variations
of batch sizes (up to 45.2% fewer iterations and 44.7% shorter time
than the existing state-of-the-art gradient variance-based method
(AdaScale)), and (2) for training with very large-batch sizes, sur-
passing the limits of existing state-of-the-art methods. To the best
of our knowledge, this is the first work to successfully scale up the
large-batch training to these limits. We also verify that each of our
layer-wise strategies significantly improves the model quality in
large-batch training. The main contributions of this work are as
follows:
• Identifying the cause of the degradation in the model quality
in existing lr scaling methods – i.e., overlooking the differ-
ence across layers in training of a DNN model.
• Proposing a novel approach to lr scaling for large-batch train-
ing, LENA, by employing a layer-wise adaptive lr scaling and
state-aware warm-up to effectively address the difference
across layers.
• Comprehensive evaluation validating the effectiveness of
LENA in large-batch training, successfully achieving the high
quality of models within fewest iterations in training, with
very large-batch sizes up to ×128 larger than the case of
single-worker training.

2 RELATEDWORK
2.1 Large-Batch Training with SGD
In this work, we consider the following problem:

min
w ∈Rd

1
|X |

∑
x ∈X

f (w,x), (1)

wherew is the set of model parameters, X is the training dataset,
and f (w,x) is the loss function of the parameters w given data
samples x . To solve the problem represented in Eq 1, we consider
SGD as an optimization algorithm. Letwt be the model parameters
at iteration t . Then,wt is updated iteratively by the following rule:

wt+1 = wt − η · дt , дt =
1
|B |

∑
x ∈B
∇f (wt ,x), (2)

whereдt is the gradient computed at iteration t ,B is a batch sampled
from X , and η is the learning rate.

As the sizes of models [5, 11, 34, 36] and datasets [9, 26, 30, 33]
increase, this iterative process requires more time. To accelerate
this process, therefore, a large-batch training with data parallelism
increases the total amount of data, B, processed at each itera-
tion by having multiple workers process them in parallel as illus-
trated in Figure 1. In the case of training with n workers, each
worker i samples a batch b from X and computes its gradient
д
(i)
t = 1

|b |
∑
x ∈b ∇f (wt ,x), and then the gradients computed by

n workers are averaged, д̄ = 1
n
∑n
i=1 д

(i)
t . Finally, the model wt is

updated by applying the averaged gradient, wt+1 = wt − η · д̄t .
Therefore, as the number of workers increases, the larger amount

1852

Not All Layers Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN Training WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Figure 3: Observation: the gradient variance tends to vary across layers and such a difference grows as the batch size gets larger.

of data (B = n · b) is processed at each iteration and the fewer
number of iterations is required in training (Tn = T1/n, where T1
the number of iterations in the case of single-worker training).

2.2 Learning Rate Scaling
However, if the number of iterations in training is reduced too
excessively (thus, too small number of iterations for a model to
converge), it may lead to degradation of the quality of the trained
model Goyal et al. [12], Jain et al. [17], Ma et al. [28]. To compensate
for this shortage of iterations in large-batch training, therefore,
learning rate scalingmethods have been proposed [12, 16, 20, 35, 41–
43], which increases the learning rate (lr) to make each update larger.
In a large-batch training, the goal of lr scaling is to train a model
with the quality, as good as the quality of single-worker training (i.e.,
target accuracy), with fewer iterations (thus faster). Formally, given
the modelw , dataset X , and n workers, let F (w,x)(1) and F (w,x)(n)
be the results of single-worker training and multi-worker (i.e., large-
batch) training, respectively. Then, the goal of lr scaling is defined
as follows.

F (w,x)(1) ≈ F (w,x)(k) (3)

Fixed lr scaling methods increase lr as the batch size increases
for training [10, 12, 18, 24, 25, 41–43]. The square root lr scaling
multiplies lr by the square root of the increase of the batch size [15,
25]. For example, when the batch size is multiplied by 4, it multiplies
lr by 2. The linear scaling [12], the most widely used one, multiplies
lr by k when the batch size increases by k times. The model trained
with fixed scaling methods, however, tends to fluctuate steeply in
the early stage of training. To alleviate this problem, lr warm-up
is often applied [12]. It gradually increases lr from a small value
such that lr reaches the target value at a specific epoch (e.g., the
first 5.5% of training epochs). The fixed scaling with the warm-up
method was successfully applied in several tasks; however, it often
causes significant degradation of the model quality [12, 20].

To alleviate the problem of fixed scaling, then, adaptive scaling
methods were proposed to adaptively adjust lr as the training pro-
gresses [41–43]. You et al. [41, 43] adjust lr based on the ratio of
the parameter value and the gradients computed at each iteration.
You et al. [42], that was proposed for the large-batch training for
LSTM models, increases the period of warm-up in proportion to
the batch size. Some works [18, 20, 21, 29, 40] consider the gradi-
ent variance for lr scaling in large-batch training. In [29, 40], it
is shown that the gradient variance is a crucial factor to consider

for reliably scaling large-batch training. AdaScale [20], a state-of-
the-art lr scaling method, estimates the state of the training by
using gradient variance and adaptively adjusts lr depending on the
variance of gradients computed by workers at each iteration (i.e.,
called the gain ratio). For instance, it increases lr almost linearly
in case of high gradient variance, but rarely increases lr in case of
low gradient variance. In this way, AdaScale successfully achieved
the higher accuracies than those of the linear scaling method in
various machine learning tasks [20].

3 THE PROPOSED METHOD: LENA
In this section, we first introduce our observations on the important
feature in the training of DNN models, and point out the limita-
tions of existing lr scaling methods based on our observation. To
overcome the limitations, then, we propose a novel lr scaling ap-
proach for large-scale DNN training, named as Layer-wise adaptivE
learning rate scaliNg and wArm-up (LENA).

3.1 Layer-Wise lr Scaling
As we explained in Section 1, inspired by [3, 4], we hypothesize
that “during the training of a DNN model, the state of the training
can vary across layers." To verify our hypothesis, we trained the
ResNet-18 model [13] with four different batch sizes on the CIFAR-
10 dataset [26] and measured the gradient variance of parameters
per layer. Figure 3 shows the results where the x-axis represents the
training epoch and the y-axis represents the gradient variance. We
observe that the gradient variance of parameters tends to vary across
layers, and such differences get larger as the batch size increases. This
observation indicates that the status of the training of parameters
could be different depending on layers and their differences get
larger in larger-batch training.

Based on this observation, we closely look into the existing state-
of-the-art gradient variance-based method (i.e., AdaScale) [20]. The
existing method adjusts lr based on the gradient variance of param-
eters for the entire model and applies the adjusted lr to all model
parameters. In other words, it does not consider the difference
across layers in training. As clearly shown in Figure 3, however, the
gradient variance for the entire model cannot faithfully represent
that for each layer, which can cause the following limitations. For
layers with lower gradient variance than that of the entire model,
lr is likely to be adjusted to be larger (than it should be). Symmet-
rically, for layers with higher gradient variance than that of the
entire model, lr is likely to be adjusted to be smaller (than it should

1853

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yunyong Ko, Dongwon Lee, & Sang-Wook Kim

Figure 4: The potential of layer-wise adaptive lr scaling for
improving the model quality in large-batch training.

be) Such limitations of the existing lr scaling method can adversely
affect the model quality and become an obstacle to further scaling
large-batch training.

Therefore, to address these limitations, we propose a novel layer-
wise adaptive lr scaling that considers the difference across layers
in training. The proposed lr scaling computes the gradient variance
of each layer individually and adjusts lr for each layer based on the
computed gradient variance of every layer at every iteration. Thus,
each layer has it own lr at every iteration. Inspired by [20, 40], we
define the gradient variance of layer k at iteration t as

дrad_var(t,k) =
1
n
∑n−1
i=0 ∥д

(i)
(t,k)∥

2

∥д̄(t,k)∥
2 , (4)

where д(i)
(t,k) is the local gradient for layer k computed by worker

i at iteration t , and д̄(t,k) is the average of all local gradients for
layer k at iteration t . Then, given the base learning rate η0, which
is a user-defined hyperparameter, we adjust the learning rate for
the parameters of layer k at iteration t by дrad_var(t,k) ∈ [1,n],

η(t,k) = дrad_var(t,k) · η0. (5)

Thus, for each layer, the larger gradient variance is (i.e.,дrad_var(t,k)
closes to n), the learning rate is adjusted to be larger (i.e., closing
to linear scaling), but the smaller gradient variance is, the learning
rate is adjusted to be smaller.

Now, let us demonstrate the potential of our layer-wise lr scaling.
We apply the layer-wise lr scaling to randomly select 50% and 100%
of layers, train ResNet-18 with very large batch sizes (8k and 16k) on
CIFAR-10 using two versions, and compare their model accuracies
with the accuracy of the baseline (i.e., AdaScale). Figure 4 shows
the results where the x-axis represents the training epoch and the
y-axis represents the model accuracy. As clearly demonstrated in
Figure 4, the more layers our layer-wise lr scaling idea is applied to,
the higher the model accuracy becomes. This result indicates that
our layer-wise lr scaling successfully addresses the limitations of
the existing lr scaling method and has a potential for improving the
model quality in large-batch training. From this result, we obtain
the two important lessons: (1) considering the training differences
across layers is a critical factor for improving the model quality in
large-batch training and (2) the existing lr scaling methods ignore
the subtle but important difference across layers in training, thus
suffering from the degradation of the model quality.

Training progress

𝐿" 𝐿# 𝐿$

𝐿" 𝐿# 𝐿$

St
at

e

End

𝐿" 𝐿# 𝐿$

𝐿" 𝐿# 𝐿$

St
at

e

End

𝐿" 𝐿# 𝐿$

𝐿" 𝐿# 𝐿$

St
at

e

End

Figure 5: The process of our layer-wise state-awarewarm-up
(The warm-up for each layer ends at a different point based
on its training state).

3.2 Layer-Wise State-Aware Warm-Up
Aswe observed in Section 3.1, the state of the training is not uniform
across layers, each of which is a building block of a DNN model
with its own role. Thus, it implies that the training speed also can
vary across layers. From this understanding, we posit that in large-
batch training, the optimal endpoint of the warm-up may differ across
layers. The warm-up technique [12, 42] starts from a small lr in the
early stage of training where a model tends to change rapidly, and
gradually increases lr until the model becomes stable. However,
since the training speed can differ across layers, the point at which
each layer becomes stable can be also different across layers (i.e.,
the different endpoint of the warm-up). For example, the layers
with fast training speeds do not need a long period of warm-up,
while the layers with slow training speeds would benefit from a
longer period of warm-up.

Despite the different training speeds across layers, however, the
existing warm-up method does not consider such a difference and
simply applies the same warm-up period to all parameters in a DNN
model [12, 42]. That is, the endpoint of warm-up is uniform across
the entire model, possibly leading to the following defects. For
the layers with fast training speeds (i.e., layers with high gradient
variance), the warm-up is likely to be applied unnecessarily long,
delaying the model convergence. On the other hand, for the layers
with slow training speeds (i.e., layers with low gradient variance),
the warm-up is likely to end too early, adversely affecting the model
quality. In addition, the endpoint of warm-up is often a user-defined
hyperparameter, requiring much trial-and-error tuning to find a
proper point.

In order to address these limitations, therefore, we propose a
layer-wise state-aware warm-up that tracks the state of the training
for each layer individually and determines its endpoint of the warm-
up automatically. Figure 5 illustrates how our idea could adaptably
change the warm-up across layers. In the training with our warm-
up, for the layers with fast training speeds, the warm-up ends early
since their training states quickly become stable. That is, for the
layers that are unlikely to degrade the model quality, the warm-up
period ends quickly (e.g., L1 in Figure 5). On the other hand, for layers
with slow training speeds, the warm-up is applied sufficiently long
since their training states become stable slowly (e.g., L3 in Figure 5).
That is, layers likely to adversely affect the model quality are trained
with a small learning rate for many iterations, which helps improve

1854

Not All Layers Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN Training WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

the model quality. As a result, our layer-wise state-aware warm-up
improves the model quality in large-batch training by precisely
tracking the training state of each layer and determining the proper
endpoint of warm-up.

In our warm-up, to determine the proper endpoint of the warm-
up for each layer, it is important to accurately estimate the training
state of each layer. To this end, we define the state of the training for
layer k at iteration t as the accumulation of the gradient variance
of the layer,

S(t,k) =
t−1∑
i=0

дrad_var(t,k) (6)

To estimate the current state of the training for layers, we use
the cumulative gradient variance instead of the gradient variance at
a particular iteration since the gradient variance at each iteration
provides the information only for the data sampled at a particular
iteration and tends to fluctuate as illustrated in Figure 3. On the
other hand, the cumulative gradient variance provides the informa-
tion for all data that have been trained since the beginning of the
training. Then, given the threshold for determining the endpoint
of the warm-up θ and the training state of layer k , S(t,k), LENA
adjusts the learning rate, η(t,k), for the parameters of layer k at
iteration t as follows:η(t,k) ·

S(t,k)

θ
, if S(t,k) ≤ θ ,

η(t,k), otherwise.
(7)

In our layer-wise state-aware warm-up, the training state of each
layer S(t,k) increases at a different rate until it reaches to the thresh-
old θ , depending on its gradient variance (i.e., дrad_var(t,k) ∈
[1,n]). Thus, the warm-up for each layer ends at a different point
and the endpoint of the warm-up for every layer is automatically
determined with a single threshold θ . We set θ = T1 · α , whereT1 is
the number of iterations in the case of single-worker training and
α is a user-defined hyperparameter. We will empirically evaluate
the impact of α on the model quality in Section 4.2.

3.3 Algorithm & Performance Consideration
Let us describe the process of large-batch training with LENA and
several performance consideration of LENA. Algorithm 1 shows
the whole training process of LENA. At iteration t , for n parallel
workers in a distributed cluster, each worker samples a batch of
training data b from data X and computes the local gradient based
on the data (lines 3-6). Then, the gradients computed by n workers
are averaged (line 7). Note that to efficiently aggregate the gradients
of multiple workers, we use the distributed communication package
of PyTorch1. Next, for each layer j, the gradient variance of the
layer is computed by Eq. 4 (lines 8-10). Before updating the model,
the learning rate for each layer is adjusted by LENA’s learning rate
function. For each layer j, LENA adjusts its learning rate by the
gradient variance of the layer and updates the training state (i.e.,
cumulative gradient variance) of the layer (lines 17-18). Then, it
determines whether applying warm-up or not based on the training
state S(t, j) (lines 19-21). After all learning rates for all layers are
adjusted, it returns the set of the adjusted learning rates, ηt . Finally,

1https://pytorch.org/docs/stable/distributed.html

Algorithm 1 Large-batch training with LENA

1: Function LargeBatchSGD_LENA(w0,X , f ,n,k,η0,θ):
2: for t = 0, 1, . . . do
3: for i = 0, . . . ,n − 1 do # in n parallel workers
4: b ← sample_batch(X)
5: д

(i)
t ←

1
|b |

∑
x ∈b ∇f (wt ,x)

6: end for
7: д̄t ←

1
n
∑n
i=1 д

(i)
t

8: for j = 0, . . . ,k − 1 do # Computing gradient variance

9: дrad_var(t, j) ←
1
n
∑n−1
i=0 ∥д

(i)
(t, j) ∥

2

∥д̄(t, j) ∥2

10: end for
11: ηt ← LENA_lr(дrad_var , t ,k,η0,θ)
12: wt+1 ← wt − ηt ⊙ д̄t
13: end for
14: return wt

15: Function LENA_lr(дrad_var , t ,k,η0,θ):
16: for j = 0, . . . ,k − 1 do # Layer-wise lr scaling
17: η(t, j) ← дrad_var(t, j) · η0
18: S(t, j) ← S(t, j) + дrad_var(t, j)
19: if S(t, j) ≤ θ then # State-aware warm-up

20: η(t, j) ← η(t, j) ·
S(t, j)

θ
21: end if
22: end for
23: return ηt

the model is updated by applying the averaged gradient д̄t with ηt ,
where ‘⊙’ means the layer-wise product (line 12).

In order to adjust the learning rate of the parameters for each
layer more reliably, we keep tracking the moving averages man
and mad of the numerator and the denominator in Eq. 4 as rec-
ommended in [20, 22, 29]. Also, to prevent the division-by-zero
problem, we add a small constant ϵ to the numerator and the de-
nominator, respectively. Then, we estimate the gradient variance
of layer k at iteration t as

дrad_var(t, j) =
man + ϵ

mad + ϵ
. (8)

Finally, we conduct the complexity analysis for LENA. In general,
the overhead of large-batch training with data parallelism is divided
into two parts: (1) computation overhead and (2) communication
overhead. In the computation part, forward/backward passes and
update operations are performed. In the communication part, the
computed gradients of workers are aggregated via network com-
munication. Here, the computation overhead depends on the size
of the model and input data, approximatelyO(m ·b) wherem is the
size of the model and b is the batch size. Similarly, the communica-
tion overhead depends on the size of the model and the number of
workers, approximatelyO(m ·n) where n is the number of workers.
Note that these overheads are common to every lr scaling method.
Then, we focus on the overhead required in the process of lr scaling.

In the fixed scaling methods (e.g., linear scaling), there is little ad-
ditional overhead since they simply multiply lr by a constant value.
In gradient variance-based methods (e.g., AdaScale), to compute the

1855

https://pytorch.org/docs/stable/distributed.html

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yunyong Ko, Dongwon Lee, & Sang-Wook Kim

gradient variance for the entire model, additionally, the square sum
of the local gradient should be computed across workers (i.e.,O(m)
per worker), and aggregated via network communication (i.e.,O(n)).
Lastly, in LENA, the following additional overheads are expected:
(1) the overhead required for obtaining the numerator in Eq. 4–i.e.,
computing the square sums of the local gradients across workers
(O(m) per worker) and aggregating them via communication (O(n)),
and (2) tracking the training state of each layer (i.e., Eq. 6) for the
layer-wise state-aware warm-up (O(k) per worker, where k is the
number of layers in a DNN model). Despite the additional overhead
of LENA, however, it does not significantly affect the training perfor-
mance since it is usually much smaller than the common overhead
of large-batch training, (i.e.,O(m)+O(n)+O(k) ≪ O(m·b)+O(m·n)).
We empirically observed that the training performance of LENA is
about 5% less than that of the fixed scaling method, and 1% less than
that of the gradient variance-based method. However, when we
consider the benefits of LENA such that LENA achieves the target
accuracy (i.e., the accuracy of single-worker training) with a much
fewer iterations than existing lr scaling methods, we argue that
the small additional overhead of LENA be not a critical issue. We
will demonstrate the effectiveness of LENA in terms of the training
time in Section 4.2.

4 EXPERIMENTAL VALIDATION
We evaluate LENA by answering the following evaluation questions:

• EQ1. Does LENA improve the model quality in large-batch
training better than existing lr scaling methods?
• EQ2. How effective are the layer-wise strategies of LENA in
improving the model quality in large-batch training?
• EQ3. How sensitive is the model quality of LENA to the
hyperparameter α?

4.1 Set-Up
Datasets and models. We evaluate LENA with two widely used
CNN models, ResNet-18 with 11 M parameters and ResNet-50 with
23 M parameters [13]. As the training datasets, we use CIFAR-10
and CIFAR-100 [26]. CIFAR-10 and CIFAR-100 consist of 50K images
with 10 labels and 100 labels for training, respectively. For both
datasets, we randomly select 45K images as training samples and
the remaining 5K images as validation samples to evaluate the
model quality.
System configuration. We use PyTorch 1.9.0 to implement all
methods including LENA on Ubuntu 18.04 OS. We run our experi-
ments on the cluster with four machines, each of which has two
NVIDIA RTX 2080 Ti GPUs installed with CUDA 10.2 and cuDNN
8.2.4, and an Intel i7-9700k CPU with 64 GB memory. All machines
are inter-connected by 10Gbps Ethernet.
Learning rate scaling methods. We compare LENA with two
state-of-the-art lr scalingmethods, LSW [12] andAdaScale (AS) [20]
and a baseline method of single-worker training (with an ideal
accuracy). LSW is a method to use the linear lr scaling with fixed
warm-up. For LSW, we set the warm-up period as the first 5.5% of
training epochs as recommended in [12]. AS adaptively adjusts the
learning rate based on the gradient variance for the entire model
without warm-up [20]. For AS, we set a moving average rate for

reliable lr scaling asmax(1−n/1000, 0), as recommended in [20]. For
LENA, we empirically found the best value for the hyperparameter
α and setα as 5% for all experiments. The experimental results about
the impact of hyperparameter α on the model quality in large-batch
training are included in Section 4.2. Finally, we use single-worker
training (i.e., no scaling without warm-up) as a baseline.
Hyperparameter setting.We set per-worker batch size b as 128
for both ResNet-18 and ResNet-50 to fully utilize the GPU memory.
We evaluate LENAwith many large batch sizes B (1024, 2048, ..., and
at most 16384). In our cluster, however, the maximum total batch
size is 1024 since there are 8 workers (n = 8). To evaluate LENA
with larger batch sizes than 1024 (i.e., n ≥ 16,B ≥ 2048), therefore,
we implement large-batch training as follows. Given a period each
worker computes its local gradient iteratively without updating the
model. At the end of the period, each local gradient (i.e., дi

(t,k)) is
used for computing Eq. 4. We note that the training result of this
implementation is theoretically the same as the original result. We
use momentum SGD and set momentum as 0.9, weight decay factor
as 0.0005, and the base learning rate η0 as 0.1 for both datasets. We
apply the exponential learning rate decaying scheduler with the
decaying factor d = 0.01.
Metrics. The goal of this work is to train a model with the qual-
ity, as good as the quality of single-worker training, with fewer
iterations (i.e., less time). Thus, we compare the model accuracy
of each method with that of single-worker training (i.e., target
accuracy) when training the same amount of training data. We
also compare the required iterations and time of each method to
achieve the target accuracy. Via preliminary experiments using
single-worker training, we set the target accuracy as 95% for the
training of ResNet-18 on CIFAR-10 (100 epochs) and 94% for the
training of ResNet-50 on CIFAR-100 (150 epochs).

4.2 Experimental Results
EQ1. Model quality. First, we evaluate the quality of the model
trained with each lr scaling method. We train ResNet-18 on CIFAR-
10 (200 epochs) and ResNet-50 on CIFAR-100 (300 epochs) with
five different batch sizes, and measure top-1 accuracy at 100th

epoch for CIFAR-10 and 150th epoch for CIFAR-100. Table 1 and
Figure 6 show the results. The results demonstrate that for all batch
sizes, LENA achieves (1) the highest accuracy when training the
same amount of training data, (2) the target accuracy within the
fewest iterations across five different batch sizes (up to 45.2% fewer
iterations and 44.7% shorter time than the existing state-of-the-art
gradient variance-based method (AS)), and (3) the target accuracy
for the training with very large-batch sizes (e.g., 8.19k and 16.4k)
that surpass the limits of existing lr scaling methods.

In addition, in terms of training time, LENA outperforms existing
lr scaling methods only except for the training on CIFAR-10 with
the batch size 1024 (This size is small enough for all lr scaling
methods to perform well). This is because, despite the additional
overhead of LENA, LENA achieves the target accuracy within much
fewer iterations than other lr scaling methods. This result indicates
that the additional overhead of LENA to consider the difference
across layers in training is worthwhile in improving both the model
quality and the training performance.

1856

Not All Layers Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN Training WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: Comparison of the model accuracy and the required epochs/iterations/time to achieve the target accuracy for various
batch sizes n (The bold font indicates the best results, and the italicized results represent the results even “better" than the
single-worker training).

Dataset n Batch size Valid. Acc. Epochs Iterations Time (sec.)

LSW AS LENA LSW AS LENA LSW AS LENA LSW AS LENA

CIFAR-10

8 1.02k 0.9494 0.9424 0.9488 104 109 104 4.58k 4.80k 4.58k 579 625 636
16 2.05k 0.9444 0.9296 0.9498 109 117 102 2.40k 2.57k 2.24k 582 628 566
32 4.10k 0.9186 0.9104 0.9514 124 126 98 1.36k 1.39k 1.07k 636 650 515
64 8.19k 0.8224 0.7980 0.9446 183 195 107 1.01k 1.07k 588 923 987 546
128 16.4k 0.3084 0.6856 0.9058 N/A N/A 128 N/A N/A 352 N/A N/A 645

CIFAR-100

8 1.02k 0.9410 0.9406 0.9454 152 151 141 6.69k 6.64k 6.20k 1737 1794 1692
16 2.05k 0.9352 0.9094 0.9478 145 171 133 3.19k 3.76k 2.92k 1534 1881 1477
32 4.10k 0.9334 0.8856 0.9434 167 183 141 1.83k 2.01k 1.55k 1704 1941 1510
64 8.19k 0.8428 0.1664 0.9450 183 N/A 141 1.00k N/A 775 1823 N/A 1475
128 16.4k 0.1650 0.0914 0.9352 N/A N/A 174 N/A N/A 478 N/A N/A 1779

Figure 6: Top-1 accuracies of each lr scalingmethod for various batch sizes B. LENA always achieves the target accuracy within
the fewest iterations. The dotted lines in figures indicate the target accuracies of the single-worker case.

EQ2. Effectiveness of layer-wise strategies. In this experiment,
we verify the effectiveness of the layer-wise lr scaling and state-
aware warm-up of LENA on the model quality. We compare all
combinations for lr scaling methods (LSW, AS, and LENA) and
warm-up methods (no warm-up, fixed warm-up, and our warm-
up). Table 2 shows the results. When the same warm-up method is
applied to each lr scaling method, LENA can achieve the highest
accuracy compared to other lr scaling methods (only except for
n = 8). In particular, LENA improves the model quality by 12.4%
without warm-up, 7.23%with the fixedwarm-up, and 5.61%with our
warm-up on average compared to AS, where these improvements
in the model quality indicate the effectiveness of the layer-wise lr
scaling of LENA in large-batch training. Next, for each lr scaling
method, let us evaluate the effect of each warm-up method on

the model quality. Our state-aware warm-up improves the model
quality more than the fixed warm-up, especially in the training with
16k of batch size. This result implies that the significant degradation
of the model quality can occur unless addressing the issue that the
model fluctuates steeply in the early stage of large-batch training,
and our layer-wise state-aware warm-up successfully addresses
the issue by tracking the training state for each individual layer.
For more in-depth analysis of our layer-wise state-ware warm-up,
we measure the warm-up endpoint of each layer. Figure 7 shows
the results, where the x-axis represents the training epoch and the
y-axis represents the number of layers ending its warm-up at the
epoch. As clearly shown in Figure 7, the warm-up endpoint differs
across layers and the warm-up is applied to each layer for a longer
period as the batch size increases. This result indicates that the

1857

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Yunyong Ko, Dongwon Lee, & Sang-Wook Kim

Table 2: Comparison of effects of warm-upmethods on the model accuracy. Our layer-wise state-aware warm-up significantly
improves the model quality of lr scaling methods (The italicized warm-up indicates the default warm-up of each lr scaling).

Dataset n Batch size Linear Scaling (LS) AdaScale (AS) LENA

No Fixed Ours No Fixed Ours No Fixed Ours

CIFAR-10

8 1.02k 0.9340 0.9494 0.9462 0.9424 0.9478 0.9438 0.9482 0.9466 0.9488
16 2.05k 0.9326 0.9444 0.9448 0.9296 0.9436 0.9486 0.9456 0.9484 0.9498
32 4.10k 0.8952 0.9186 0.9364 0.9104 0.9434 0.9480 0.9472 0.9488 0.9514
64 8.19k 0.8414 0.8224 0.8836 0.7980 0.9024 0.9376 0.9340 0.9444 0.9446
128 16.4k 0.1594 0.3084 0.6364 0.6856 0.7274 0.8946 0.8378 0.8854 0.9058

CIFAR-100

8 1.02k 0.9300 0.9410 0.9450 0.9406 0.9478 0.9446 0.9398 0.9454 0.9454
16 2.05k 0.9218 0.9352 0.9446 0.9094 0.9434 0.9438 0.9442 0.9456 0.9478
32 4.10k 0.9198 0.9334 0.9352 0.8856 0.9358 0.9384 0.9378 0.9410 0.9434
64 8.19k 0.8578 0.8428 0.8932 0.1664 0.8560 0.9016 0.6210 0.9390 0.9450
128 16.4k 0.1482 0.1650 0.2842 0.0914 0.0681 0.4548 0.4442 0.4946 0.9352

Figure 7: Different warm-up endpoints of layers in large-
batch training with LENA.

point at which each layer becomes stable (i.e., the optimal endpoint)
differs and such differences across layers should be considered for
improving the model quality, as we claimed in Section 3.2.
EQ3. Hyperparameter sensitivity. Finally, we evaluate the hy-
perparameter sensitivity of LENA and provide the best value for the
hyperparameter α , improving the model quality most in large-batch
training. As explained in Section 3.2, hyperparameter α determines
the threshold θ for the layer-wise state-aware warm-up. As α be-
comes larger, the longer the warm-up is applied to layers. We com-
pare the model quality of LENAwith varying α = 1%, 3%, 5%, 7%, 9%
in the training with five different batch sizes. Table 3 shows the
results. LENA achieves high quality of the model with a wide range
of α and batch sizes (except for the very short period of the warm-
up and very large batch size together, α = 1% and B = 16k). Based
on these results, we conclude that the model quality of LENA is in-
sensitive to α , and recommend to set α as 5%. As a result, LENA not
only improve the model quality much better than existing lr scaling
methods, but also rarely requires much trial-and-error tuning to
find a best value for the hyperparameter.

5 CONCLUSION
In this work, we observed that the state of the training tends to
vary across layers in a DNN model training, and identified the
cause of the degradation in the model quality in existing lr scaling
methods – i.e., overlooking the difference across layers in train-
ing. Based on this observation, we proposed a novel lr scaling
approach toward large-scale DNN training, named as LENA, that

Table 3: The impact of hyperparameter α on the model qual-
ity of LENA in the training with different batch sizes.

n B Warm-up threshold α

1% 3% 5% 7% 9%
C
IF
A
R
-1
0 8 1k 0.9488 0.9418 0.9448 0.9514 0.9492

16 2k 0.9420 0.9454 0.9498 0.9432 0.9413
32 4k 0.9428 0.9508 0.9514 0.9504 0.9490
64 8k 0.9432 0.9438 0.9446 0.9436 0.9434
128 16k 0.8412 0.8932 0.9058 0.8928 0.8892

C
IF
A
R
-1
00

8 1k 0.9448 0.9458 0.9454 0.9444 0.9456
16 2k 0.9380 0.9358 0.9478 0.9468 0.9446
32 4k 0.9410 0.9426 0.9434 0.9412 0.9392
64 8k 0.9402 0.9430 0.9450 0.9416 0.9396
128 16k 0.6802 0.9336 0.9352 0.9290 0.9266

successfully addresses the issue with two layer-wise strategies: (1)
a layer-wise adaptive learning rate scaling and (2) a layer-wise
state-aware warm-up. Through the comprehensive evaluation with
variations of batch sizes, we demonstrated that LENA achieves the
target accuracy (i.e., the accuracy of single-worker training) with
the fewest iterations across different batch sizes, and for training
very large-batch sizes that surpass the limits of all state-of-the-art
methods. We also verified that each of our layer-wise strategies
significantly improves the model quality in large-batch training. In
future work, we plan to evaluate LENA with larger sizes of models
and data, and in different machine learning tasks such as speech
recognition and machine translation.

ACKNOWLEDGMENTS
The work of Sang-Wook Kim was supported by the National Re-
search Foundation of Korea (NRF) under Project Number NRF-
2020R1A2B5B03001960, and Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) under Project
Number 2020-0-01373. The work of Dongwon Lee was supported
by the NSF award #1820609.

1858

Not All Layers Are Equal: A Layer-Wise Adaptive Approach Toward Large-Scale DNN Training WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. 2019. Stochas-

tic gradient push for distributed deep learning. In Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 344–353.

[2] Medha Atre, Birendra Jha, and Ashwini Rao. 2021. Distributed Deep Learning
Using Volunteer Computing-Like Paradigm. arXiv preprint arXiv:2103.08894
(2021).

[3] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and
Antonio Torralba. 2020. Understanding the role of individual units in a deep
neural network. Proceedings of the National Academy of Sciences of the United
States of America (PNAS) 117, 48 (2020), 30071–30078.

[4] Oded Ben-David and Zohar Ringel. 2019. The role of a layer in deep neural
networks: a Gaussian Process perspective. arXiv preprint arXiv:1902.02354 (2019).

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[6] Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jaeho Choi. 2019. Rating aug-
mentation with generative adversarial networks towards accurate collaborative
filtering. In Proceedings of the World Wide Web Conference (WWW). 2616–2622.

[7] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project adam: Building an efficient and scalable deep learning training
system. In Proceedings of the Symposium on Operating Systems Design and Imple-
mentation (OSDI)). 571–582.

[8] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Proceedings of the Advances in Neural Information
Processing Systems. 1223–1231.

[9] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 248–255.

[10] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. Adabatch:
Adaptive batch sizes for training deep neural networks. arXiv preprint
arXiv:1712.02029 (2017).

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

[14] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More effective
distributed ml via a stale synchronous parallel parameter server. In Proceedings
of the Advances in Neural Information Processing Systems. 1223–1231.

[15] Elad Hoffer, Itay Hubara, and Daniel Soudry. 2017. Train longer, generalize
better: closing the generalization gap in large batch training of neural networks.
In Proceedings of the International Conference on Neural Information Processing
Systems (NeurIPS). 1729–1739.

[16] Zhouyuan Huo, Bin Gu, and Heng Huang. 2020. Large batch training does not
need warmup. arXiv preprint arXiv:2002.01576 (2020).

[17] Prateek Jain, Sham Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron
Sidford. 2018. Parallelizing stochastic gradient descent for least squares regres-
sion: mini-batching, averaging, and model misspecification. Journal of Machine
Learning Research 18 (2018).

[18] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fis-
cher, Yoshua Bengio, and Amos Storkey. 2017. Three factors influencing minima
in sgd. arXiv preprint arXiv:1711.04623 (2017).

[19] Yuting Jia, Qinqin Zhang, Weinan Zhang, and Xinbing Wang. 2019. Community-
gan: Community detection with generative adversarial nets. In Proceedings of the
World Wide Web Conference (WWW). 784–794.

[20] Tyler Johnson, Pulkit Agrawal, Haijie Gu, and Carlos Guestrin. 2020. AdaScale
SGD: A User-Friendly Algorithm for Distributed Training. In Proceedings of the
International Conference on Machine Learning (ICML). PMLR, 4911–4920.

[21] Tyler B Johnson and Carlos Guestrin. 2018. Training deep models faster with
robust, approximate importance sampling. Advances in Neural Information Pro-
cessing Systems 31 (2018), 7265–7275.

[22] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[23] Yunyong Ko, Kibong Choi, Hyunseung Jei, Dongwon Lee, and Sang-Wook Kim.
2021. ALADDIN: Asymmetric Centralized Training for Distributed Deep Learn-
ing. In Proceedings of the ACM International Conference on Information and Knowl-
edge Management (CIKM).

[24] Yunyong Ko, Kibong Choi, Jiwon Seo, and Sang-Wook Kim. 2021. An In-Depth
Analysis of Distributed Training of Deep Neural Networks. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
994–1003.

[25] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997 (2014).

[26] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[27] Youngnam Lee, Sang-Wook Kim, Sunju Park, and Xing Xie. 2018. How to impute
missing ratings? Claims, solution, and its application to collaborative filtering. In
Proceedings of the World Wide Web Conference (WWW). 783–792.

[28] Siyuan Ma, Raef Bassily, and Mikhail Belkin. 2018. The power of interpolation:
Understanding the effectiveness of SGD in modern over-parametrized learning.
In Proceedings of the International Conference on Machine Learning (ICML). PMLR,
3325–3334.

[29] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. 2018. An
empirical model of large-batch training. arXiv preprint arXiv:1812.06162 (2018).

[30] AnshulMittal, Noveen Sachdeva, Sheshansh Agrawal, Sumeet Agarwal, Purushot-
tam Kar, and Manik Varma. 2021. ECLARE: Extreme Classification with Label
Graph Correlations. In Proceedings of the World Wide Web Conference (WWW).
3721–3732.

[31] Junjie Qian, Taeyoon Kim, and Myeongjae Jeon. 2021. Reliability of Large Scale
GPU Clusters for Deep Learning Workloads. In Companion Proceedings of the
Web Conference (WWW). 179–181.

[32] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS). 693–701.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, SeanMa,
ZhihengHuang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211–252. https:
//doi.org/10.1007/s11263-015-0816-y

[34] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks
for large-scale image recognition. In Proceedings of the International Conference
on Learning Representations (ICLR).

[35] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2018. Don’t
Decay the Learning Rate, Increase the Batch Size. In Proceedings of International
Conference on Learning Representations (ICLR).

[36] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In Proceedings of the International Conference on
Machine Learning (ICML). PMLR, 6105–6114.

[37] Ran Xin, Soummya Kar, and Usman A Khan. 2020. Decentralized stochastic
optimization and machine learning: A unified variance-reduction framework for
robust performance and fast convergence. IEEE Signal Processing Magazine 37, 3
(2020), 102–113.

[38] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun
Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. 2015. Petuum: A new
platform for distributed machine learning on big data. IEEE transactions on Big
Data 1, 2 (2015), 49–67.

[39] Weizheng Xu, Youtao Zhang, and Xulong Tang. 2021. Parallelizing DNN Training
on GPUs: Challenges and Opportunities. In Companion Proceedings of the Web
Conference (WWW). 174–178.

[40] Dong Yin, Ashwin Pananjady, Max Lam, Dimitris Papailiopoulos, Kannan Ram-
chandran, and Peter Bartlett. 2018. Gradient diversity: a key ingredient for
scalable distributed learning. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS). PMLR, 1998–2007.

[41] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Large batch training of convo-
lutional networks. arXiv preprint arXiv:1708.03888 (2017).

[42] Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-Jui
Hsieh. 2019. Large-batch training for LSTM and beyond. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). 1–16.

[43] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bho-
janapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2019.
Large batch optimization for deep learning: Training bert in 76 minutes. arXiv
preprint arXiv:1904.00962 (2019).

[44] Hao Zhang, Zeyu Zheng, Shizhen Xu,Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017. Poseidon: An Efficient
Communication Architecture for Distributed Deep Learning on GPU Clusters. In
Proceedings of the USENIX Annual Technical Conference (ATC). 181–193.

[45] Sixin Zhang, Anna E Choromanska, and Yann LeCun. 2015. Deep learning with
elastic averaging SGD. In Proceedings of the Advances in Neural Information
Processing Systems. 685–693.

[46] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma,
and Tie-Yan Liu. 2017. Asynchronous stochastic gradient descent with delay
compensation. In International Conference on Machine Learning (ICML). PMLR,
4120–4129.

1859

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y

	Abstract
	1 Introduction
	2 Related Work
	2.1 Large-Batch Training with SGD
	2.2 Learning Rate Scaling

	3 The Proposed Method: LENA
	3.1 Layer-Wise lr Scaling
	3.2 Layer-Wise State-Aware Warm-Up
	3.3 Algorithm & Performance Consideration

	4 Experimental Validation
	4.1 Set-Up
	4.2 Experimental Results

	5 Conclusion
	Acknowledgments
	References

