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Abstract
Influence maximisation (IM) is the problem of finding a set of k-seed nodes that could maximize the amount of influence spread in a
social network. In this article, we point out that the existing methods are taking the source-oriented estimation (SOE), which is the main
reason of their failure in accurately estimating the amount of potential influence spread of an individual node. We propose a novel tar-
get-oriented estimation (TOE) that understands information diffusion more accurately as well as remedies the drawback of the existing
methods. Our extensive experiments on four real-world datasets demonstrate that our proposed method outperforms the existing
methods consistently with respect to the quality of the selected seed set.
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1. Introduction

With an increasing number of users exploiting online social networks (OSN) such as Facebook and Twitter, a viral mar-

keting based on the word-of-mouth effect (i.e. a person’s decision to buy a product is often strongly influenced by her

friends, acquaintances and business partners) in OSN has attracted a lot of interest these days [1–3]. For example, in

order to promote its new product, a company may carefully select some influential users in OSN, provide free samples

to them and let them post positive reviews about the product, expecting its positive influence to spread over the entire

social network [4,5]. Along this line, it is important to select truly influential users so as to maximize the amount of

influence spread within a limited budget. Formally, this problem is called influence maximisation (IM), which is to find

a k-seed set that incurs the maximum influence spread [6–13]. Here, a k-seed set indicates a set of k nodes that initiate

influence propagation (i.e. those who receive free samples); the influence is propagated in accordance with an informa-

tion diffusion model (e.g. Independent Cascade (IC) model and Linear Threshold (LT) model); the amount of influence

spread by a seed set corresponds to the number of non-seed nodes eventually getting activated by the seed set.

Kempe et al. [6] established that finding the optimal solution to IM is non-deterministic polynomial-time (NP) hard-

ness. They also presented a greedy algorithm (henceforth, referred to as SimpleGreedy) that gradually selects a seed node

maximising the influence spread at every step, eventually making up k-seed nodes, which guarantees up to 63% of influ-

ence spread by the optimal solution. However, SimpleGreedy still suffers from the low efficiency due to the following

two problems with respect to the micro and macro levels. At the macro level, after selecting one seed node at each step,

SimpleGreedy needs to re-evaluate the influence spread of every non-seed node because their influence spread can be
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reduced (i.e. changed) when a seed was selected among them in the previous step. At the micro level, SimpleGreedy esti-

mates the influence spread of a node by running Monte-Carlo (MC) simulations 10,000 times, which is also a very time-

consuming task.

A number of studies have been done to tackle such performance issues [14–23]. Aiming at the macro-level problem,

Leskovec et al. [14] proposed cost-effective lazy forward (CELF) optimisation that enormously reduces the number of

re-evaluations on non-seed nodes required after selecting one seed node by exploiting the sub-modularity property of

IM’s objective function. It remedies the macro-level problem significantly; however, it still requires much time when

applied to large-scale graphs due to the micro-level problem (i.e. the costly MC simulations). SIMPATH [15] and IPA

[16] have been proposed to remedy the micro-level problem. Rather than MC simulations, these methods exploit the

weight (i.e. influence probability) of every path starting from each seed in order to estimate the influence spread of a

seed set. Hereafter, we call this category of methods path-based methods. As a result, the path-based methods are an

order of magnitude faster than SimpleGreedy while providing comparable accuracy in IM.

In this article, we point out the problem with existing path-based methods in estimating influence spread of a seed

set with respect to the accuracy of influence estimation and propose an approach to address the problem. Recall that the

k-seed set of SimpleGreedy is considered as a ground truth in evaluating other approximate IM algorithms;

SimpleGreedy defines the influence spread of a seed set as the number of non-seeds (i.e. targets) activated by the seed

set (i.e. sources). In this sense, the influence spread of the seed set should be evaluated from the target nodes’ perspec-

tive, more specifically, based on the total amount of influence that every target node receives.

Here, how to aggregate all the influence to an individual target node from multiple neighbours should be dependent

on diffusion models employed. However, when aggregating the influence, existing path-based methods just take a sim-

ple linear sum regardless of diffusion models since they first compute the influence from each individual seed node (i.e.

source) to all other nodes and then summate the influence from all the seed nodes. We claim that this causes existing

path-based methods to estimate influence spread incorrectly under some diffusion model.

Motivated by the problem with existing path-based methods, referred to as source-oriented estimation (SOE)

approach, we propose a novel target-oriented estimation (TOE) approach that remedies the drawback of SOE. TOE (1)

aggregates the amount of influence each individual target (non-seed) node receives from a whole set of seed nodes and

(2) takes the linear sum of those of all target nodes. Here, in step (1), TOE takes different schemes to aggregate the

influence received by an individual target node from multiple neighbours, according to diffusion models. In addition,

this approach is conceptually equivalent to that of SimpleGreedy, which estimates the influence spread based on the total

amount of influence received by every target node from the whole seed nodes. We thus expect that TOE results in more

accurate computation of influence spread than SOE.

We demonstrate how our TOE is applied to each of IC and LT diffusion models. We show that TOE and SOE perform

in the exactly identical way under the LT model when computing the influence spread of a seed set, but in a different

way under the IC model. Our extensive experiments on five real-world datasets demonstrate that our TOE consistently

outperforms SOE as well as other IM algorithms in terms of the quality (i.e. the amount of influence spread) of the

derived k-seed set, activating up to 1200 more nodes than SOE. Also, the additional time cost of our TOE compared with

SOE is shown to be insignificant.

The rest of this article is organized as follows. Section 2 introduces the IM problem in a social network and reviews

its related studies. Section 3 points out the problem of existing path-based methods and section 4 presents our TOE

approach to remedy the problem. We show our experimental results in section 5 and finally conclude this article in sec-

tion 6.

2. Preliminaries

2.1. IM problem

Kempe et al. [6] formulated the IM as a discrete optimisation problem as follows.

Definition 1

IM. Given a network G having n nodes and a limited budget k, it is to find a set S consisting of k users, called a seed

set, that maximizes σ(S), which corresponds to influence spread over G

S = argmax Sj j= kσ Sð Þ ð1Þ
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To solve the IM problem, we need to have a diffusion model that describes how influence spreads over the network.

The LT model and the IC model are widely used diffusion models [6]. Both the two models have the common rules as

follows:

1. Nodes can have either of two states, active or inactive.

2. As time goes by, inactive nodes can be activated, but active nodes cannot become inactive.

3. The diffusion process is finished if any nodes do not become active state.

In the LT model, each node has its own random threshold and gets activated if the cumulative influence given from its

active neighbouring nodes becomes larger than the threshold. In the IC model, each node receives influence from each of

its active neighbouring nodes independently and its activation depends on the weight of the edge from each neighbouring

node. The weight indicates the activation probability.

Finding the optimal solution to the IM problem is NP-hard because it is required to compare the influence spreads of

all possible nCk k-seed sets S from n nodes in a social network. Kempe et al. [6] proposed SimpleGreedy, which gradu-

ally picks up a new seed node v maximising the marginal gain (i.e. σ(S + fvg)� σ(S)) in each step and repeats this step

k times to find k-seed nodes. This greedy solution is proven to guarantee 63% of influence spread obtained by the opti-

mal solution if σ(·) is non-negative, monotone and submodular [6]. A function σ(·) is monotone if σ(S)≤ σ(T ) whenever

S ⊂ T , and it is submodular if σ(S + fvg)� σ(S)>σ(T + fvg)� σ(T ) for all S ⊂ T .

2.2. Existing solutions

As explained in the previous section, however, SimpleGreedy still suffers from the low efficiency in both micro and

macro levels. A number of studies have been done to improve the performance of finding influential nodes in social net-

works. Several methods have been proposed to address the macro-level problem [14,17–23]. For example, CELF per-

forms a ‘lazy-forward’ optimisation in picking up a new seed to greatly reduce the number of re-evaluations of influence

spread by exploiting the submodular property of the objective function. CGA and INCIM exploit the property of a com-

munity structure in a network [24] (i.e. the nodes in the same community are densely connected but those in different

communities are sparsely connected) to re-evaluate the influence spread of only those nodes (i.e. rather than all the

nodes) in the community where a new seed was selected in the previous step.

However, path-based methods have been proposed to address the micro-level problem [15,16,23]. The main idea

behind these methods is to aggregate the weights for all the paths starting from a seed node in estimating its influence

spread, rather than running costly MC simulations. Formally, the influence spread of a node v is defined by the follow-

ing equation in path-based methods

σ(fvg)=
X

p∈ paths from v

Wp ð2Þ

In equation (2), v, p and Wp indicate a node, a path starting from v and a weight of path p, respectively. Here, Wp is

computed by multiplying the weights on all the edges included in p (i.e. Wp = Q
e∈ p we); p should be acyclic and should

include only one seed node according to the assumption of diffusion models; therefore, paths including loop or multiple

seeds are ignored in estimating influence spread of a set of nodes. The problem of finding all possible paths, however, is

#P-hard [25]. Thus, existing methods prune a path p if its weight becomes smaller than a pre-defined threshold with the

intuition that as nodes are located farther, less influence diffusion appears between the nodes [15,16]. After influence

spread of each seed node, the influence spread of a seed set S is computed by the linear sum of all seeds’ influence spread

as in equation (3) where s indicates a seed node

σ Sð Þ=
X
s∈ S

σ sf gð Þ ð3Þ

The path-based methods achieve an order of magnitude speed up compared with SimpleGreedy while providing com-

parable accuracy.

3. Motivation

In this section, we point out the problem with the approach of existing path-based methods in estimating influence spread

of a seed set with respect to the accuracy of influence estimation, which becomes our motivation. As shown in equations
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(2) and (3), the path-based methods (1) compute σ(fvg), indicating the amount of influence spread each individual seed v

(i.e., source) gives over all the non-seed nodes, and then (2) linearly summate σ(fvg) of all the seed nodes. Indeed, their

approach is SOE: they estimate the influence spread of the seed set based on how much individual source (i.e. seed) node

propagates influence to target (i.e. non-seed) nodes.

However, we claim that such an SOE approach should be modified since SimpleGreedy, which the path-based meth-

ods try to follow, takes an approach opposed to such an SOE approach when estimating influence spread: SimpleGreedy

defines the influence spread of a seed set as the number of non-seed nodes (i.e. targets) influenced by the seed set; this

indicates that the total amount of influence (i.e. aggregated influence) received by target nodes determines the influence

spread of the seed set, which we call as TOE. Moreover, in the SOE approach, the total amount of influence that a target

node receives is just computed by the linear sum, which should be different according to diffusion models. As a result,

SOE cannot estimate the influence spread of a seed set correctly under some diffusion models that do not employ the lin-

ear sum as the aggregation scheme.

For example, as described in Figure 1, suppose u and v, which are active nodes, propagate influence to a non-seed

node k with the weights 0.7 and 0.4, respectively. Here, SOE estimates the influence spread of the seed set as follows:

σ(S)= σ(fug)+ σ(fvg). In other words, the amount of influence received by node k becomes 1.1 regardless of diffusion

models. Under the LT model, fortunately, the amount of influence received by node k is equivalent to the linear sum of

0.7 and 0.4, which is the same with the SOE’s scheme. Under the IC model, however, the amount of influence received

by node k should be computed as 1� (1� 0:7)(1� 0:4)= 0:82, rather than 1.1 by the linear sum, because u and v influ-

ence node k independently. In the following section, we propose our TOE approach that can fundamentally solve the

problem with SOE regardless of diffusion models.

4. The proposed approach

The proposed TOE estimates the amount of influence spread of a seed set as follows: (1) to aggregate the amount of

influence received by each individual non-seed node (i.e. target) from the whole seed set and (2) to summate those of all

non-seed nodes linearly. To this end, we first define σd(S), the aggregated value of influence that a non-seed node, d,

receives from all the seed nodes S. Here, the aggregation scheme should be dependent on diffusion models, namely, the

LT or IC models.

Under the LT model, according to its property, the influences from all the seed nodes towards a given target node are

summated linearly. Therefore, a target node d’s aggregated influence, σd(S), is computed as follows

σd Sð Þ=
X

p∈PS → d

Wp ð4Þ

In equation (4), d, PS → d and Wp indicate a non-seed node reachable from S, a set of paths from S to d and a weight of

path p, respectively. Next, we add up σd(S) of all the target nodes d ∈ fV � Sg, in order to get the total amount of influ-

ence spread by the seed set, as follows

Figure 1. A toy example.
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σ Sð Þ=
X

d ∈V�S

σd Sð Þ ð5Þ

Under the LT model, we note that SOE and TOE compute the amount of influence spread of a seed set in an identical

way. This is because the amount of influence towards a node is a linear sum of influences from its neighbouring nodes in

the LT model. Therefore, the seed sets obtained from SOE and TOE should be identical as well.

Lemma 1. TOE and SOE compute the amount of influence spread of a seed set in the same way under the LT model.

Proof for Lemma 1. σ(S)TOE and σ(S)SOE are influence spread of seed set S by TOE and SOE, respectively

σ Sð ÞTOE =
X

d ∈V�S

σd Sð Þ=
X

d ∈V�S

X
p∈PS → d

Wp

=
X

p∈PS → d1

Wp +
X

p∈PS → d2

Wp + � � � +
X

p∈PS → dn

Wp

= WPs1 → d1
+WPs2 → d1

+ � � � +WPsk → d1

� �
+ � � � + WPs1 → dn

+WPs2 → dn
+ � � � +WPsk → dn

� �

= WPs1 → d1
+WPs1 → d2

+ � � � +WPs1 → dn

� �
+ � � � + WPsk → d1

+WPsk → d2
+ � � � +WPsk → dn

� �

ð6Þ

σ Sð ÞSOE =
X
s∈ S

σ sf gð Þ=
X
s∈ S

X
p∈Ps→V�S

Wp

=
X

p∈Ps1 →V�S

Wp +
X

p∈Ps2 →V�S

Wp + � � � +
X

p∈Psk →V�S

Wp

= WPs1 → d1
+WPs1 → d2

+ � � � +WPs1 → dn

� �
+ � � � + WPsk → d1

+WPsk → d2
+ � � � +WPsk → dn

� �
ð7Þ

·· · σ Sð ÞTOE = σ Sð ÞSOE ð8Þ

Next, under the IC model where the influences of all the seed nodes towards a target node are considered indepen-

dently, σd(S) is computed as follows

σd Sð Þ= 1�
Y

p∈Ps→ d

1�Wp

� �
ð9Þ

Again, by adding up σd(S) of all the target nodes, we get the total amount of influence spread of the seed set in the

same way as equation (5). Under the IC model, we note that TOE and SOE compute the amount of influence spread of a

seed set in different ways or producing different seed sets. As pointed out before, this is due to the difference in the view-

points in computations of influence spread: TOE aggregates the total amount of influence received by all the target nodes

(i.e. from the target nodes’ perspective) while SOE does the amount given by source nodes (i.e. from the source nodes’

perspective).

As a result, TOE successfully follows the philosophy of diffusion models when aggregating influences received by a

target node from source nodes, while SOE has no chance to follow the philosophy but always sums up those influences

linearly.

Lemma 2. Under the IC model, the total amounts of influence spread of a seed set estimated by TOE and SOE could be

different. TOE estimates the influence spread correctly considering the rule of the IC model.

Proof for Lemma 2. We prove Lemma 2 by showing the following counter example.

In Figure 1, a two-seed set S = fu, vg influences target nodes k and l. First, seed u influences node k with a probability

of 0.7 and seed v influences nodes k and l with probability of 0.4 and 0.1, respectively. The influence spread of S by SOE

and TOE is computed as follows
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σ Sð ÞSOE =
X
s∈ S

σ sf gð Þ= σ uf gð Þ+ σ vf gð Þ= 0:7+ 0:5= 1:2 ð10Þ

σ Sð ÞTOE =
X

d ∈V�S

σd Sð Þ= σk u, vf gð Þ+ σl u, vf gð Þ= 1� 1� 0:7ð Þ 1� 0:4ð Þ+ 0:1= 0:92 ð11Þ

·· · σ Sð ÞTOE 6¼ σ Sð ÞSOE ð12Þ

Note that in Figure 1, both nodes u and v try to influence node k at once. In the case of SOE, however, influences of

u and v towards k are not considered independently; rather, the linear sum of the two influences is taken regardless of

the IC model. As a result, the aggregation property of the IC model is not preserved, which makes the influence spread

incorrectly predicted. In contrast, our TOE computes the amount of influence spread correctly by aggregating influence

received by target nodes as performed in the IC model.

In summary, TOE and SOE compute the amount of influence spread by a seed set in an identical way under the LT

model but in different ways under the IC model. In the next section, we compare TOE with SOE in terms of both accu-

racy and efficiency.

Algorithm 1 shows the whole process of selecting a k-seed set using the TOE. For the first seed, marginal gains

(each of which is denoted as u.mg) of all nodes are calculated by the TOE and the nodes are inserted into Q in des-

cending order of their marginal gains (lines 2–5). Then, the top node with the largest marginal gain is selected as the

first seed and removed from Q (lines 6–7). After a new seed node is selected, the CELF algorithm is applied to select

the next seed node (lines 8–17): the marginal gain of the top node is recalculated; if the value is greater than that of

the next node, the top node is selected as the next seed. Otherwise, Q is reordered. This process is repeated until the

size of the seed set is k.

5. Evaluation

In this section, we evaluate the effectiveness of our approach with five real-world datasets. The purpose of our experi-

ments is to answer the three questions in the following:

1. What is the optimal pruning threshold for each dataset?

2. Does our TOE provide more accurate results than those of SOE as well as other IM algorithms?

3. How much time does our TOE spend compared with SOE?

Algorithm 1. The process of the seed selection.

Input: network G(V, E), seed size k
Output: a seed set S
1: S 1; Q 1;
2: for each u∈ V do
3: u:mg= σ S+ uf gð ÞTOE � σ Sð ÞTOE;
4: Add u to Q;
5: end for
6: u= top node in Q;
7: S S ∪ uf g; Q Q� uf g
8: while Sj j< k� 1 do
9: u= top node in Q;

10: v = next node in Q;
11: u:mg= σ S+ uf gð ÞTOE � σ Sð ÞTOE;
12: if u:mg> v:mg then
13: S S ∪ uf g; Q Q� uf g
14: else
15: Heapify Q;
16: end if
17: end while
18: return S;
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5.1. Experimental setup

Dataset. NetHEPT, NetPHY and DBLP are datasets of a co-authorship network consisting of authors and their co-

authorships [6,23]; a node represents an author of a paper and an edge does the existence of co-work between the two

authors. Epinion [5] is a dataset of a customer trust network where a node represents an individual customer and an edge

does a customer’s trust to another customer. Stanford [26] is a web graph where a node represents a web page and an

edge does a hyperlink between two pages. Table 1 provides the statistics of the five datasets.

5.1.1. Diffusion model. As explained in the previous section, TOE and SOE compute the amount of influence spread by a

seed set in the same way under the LT model, thus derive the same seed set in every case. Therefore, we conducted all

the experiments only under the IC model. In our evaluation, we exploited the weighted cascade (WC) model [6], which

is a widely used variation of the IC model. It assigns a propagation probability to an edge (u, v) by wu, v = 1=din(v), where

din(v) is the in-degree of a node v. The WC model aims to penalise the nodes more with a higher in-degree since the

nodes of higher in-degree cause them to have higher probability to be chosen as a seed.

5.1.2. Algorithms. For evaluation, we compared the following algorithms for seed selections: Random selects nodes ran-

domly for seeds (a baseline). MC-Greedy is the same as SimpleGreedy [6]. Single degree discount (SDD) selects nodes

of the highest degree (whenever a node is selected as a seed, the degree of all its neighbours decreases by 1) [27]. SOE

is the existing path-based method. Finally, TOE is our proposed approach.

5.2. Q1: Optimal pruning threshold

In this experiment, before evaluating the effectiveness of TOE, we try to find the optimal pruning threshold for each

dataset. A pruning threshold indicates the minimum of the weight on a path to be considered in path-based influence

spread estimation: if there is a path whose weight is smaller than the threshold, the path is ignored when the influence

spread is estimated. Intuitively, as the threshold gets lower, the influence spread of a seed set becomes larger but requires

more time to be computed. To find the optimal threshold, we select seed sets using our TOE multiple times while vary-

ing the threshold from 1/20 to 1/640. Then, we compute the influence spread of each seed set by 10,000 times of MC

simulations. Since existing work already provided the optimal pruning thresholds for DBLP, Epinion and Stanford data-

sets [16], we conducted this experiment only for NetHEPT and NetPHY datasets.

Figure 2(a) and (b) shows the results, representing relationship between seed selection time and influence spread

according to the different pruning thresholds, where the x-axis indicates the seed selection time and the y-axis does the

total amount of influence spread (i.e. the number of nodes activated by the seed set). Among various candidate values

for the optimal pruning threshold, we selected 1/160 and 1/80 for NetHEPT and NetPHY, respectively. We finally used

the pruning thresholds summarised in Table 2 for the rest of our experiments.

Table 1. Dataset statistics

Number of nodes Number of edges Maximum in-degree Maximum out-degree Average degree

NetHEPT 15K 58K 341 341 7.7
NetPHY 37K 231K 286 286 12.4
Epinion 75.8K 508K 3032 1798 6.7
Stanford 281K 2.31M 38,606 255 8.2
DBLP 655K 3.98M 588 588 6.1

Table 2. The optimal pruning thresholds of datasets

NetHEPT NetPHY Stanford Epinion DBLP

1/160 1/80 1/160 1/320 1/160
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5.3. Q2: Influence spread estimation

In this experiment, we compare the amount of influence spread of our TOE with those of existing IM algorithms sum-

marised in section 5.1. To this end, for each dataset, we first selected 100 seeds obtained by different IM algorithms.

Then, we ran 10,000 MC simulations for each seed set and took the average of the amount of influence spread.

Figure 3 (a)–(e) shows the experimental results on the total amount of influence spread (y-axis) according to the size

of a seed set (x-axis) for different datasets. Among the four algorithms, Random provides the lowest influence spread.

SDD provides influence spread higher than that of Random but lower than those of SOE and TOE. Our TOE universally

shows the biggest influence spread in all the five datasets.

The difference in the amounts of influence spread from the seed sets obtained by the TOE and the SOE is more clearly

shown in Figure 4 (a)–(e). The x-axis represents the size of the seed set and the y-axis represents (T-S) where T and S

indicate the amounts of influence spread of the TOE and the SOE, respectively. Note that the values of the y-axis in both

graphs show positive values in all cases, which indicates that our TOE consistently outperforms the SOE at any size of

seed sets. Quantitatively, our method using the TOE selected a k-seed set with greater influence spread up to 37, 35, 176,

1202 and 1216 for NetHEPT, NetPHY, Epinion, Stanford and DBLP datasets, respectively. These results confirm that

our TOE computes influence spread in a much more elaborated way and thus finds a more accurate result of top k-seeds

that provides larger influence spread over a whole network. In addition, even though the differences in influence spread

between the TOE and the SOE look insignificant, especially in the NetHEPT, NetPHY and Epinion datasets, we can

observe their meaningful difference in Stanford and DBLP datasets, where graphs are large enough to be similar in size

to real-world networks. Moreover, as the size of the seed set increases, their difference in influence spread tends to be

larger (i.e. the larger the size of a seed set is, the more the TOE outperforms the SOE). This implies that our proposed

TOE is fairly effective in those graphs with sizes of a real-world network.

5.4. Q3: Seed selection time

In this experiment, we compare the computational efficiency of TOE with those of existing algorithms. We perform the

seed selection on a Windows 7 64-bit operating system equipped with 3.3-GHz Intel Core 2 Quad CPUs and 8 GB

RAM. We report the experimental results in Figure 5, where the y-axis indicates consumed time (in seconds) for select-

ing 100 seeds by each algorithm.

Although Random and SDD provide high efficiency, seed sets selected by them provide low-influence spread as

shown in the previous sub-section. MC-Greedy is the best performer in terms of the influence spread of a seed set, and

thus, it is generally used as a ground truth [6,15,16]. However, it is computationally inefficient; for example, in DBLP

dataset which consists of 655K nodes and 3.98M edges, it consumes more than a week for selecting just a 100-seed set.

In spite of its influence spread gain, such a long processing time is a great burden from the business perspective.

However, the TOE and the SOE are an order of magnitude faster than MC-Greedy, consuming around an hour for

selecting a 100-seed set. It is because the TOE and the SOE exploit path-based influence estimation rather than running

the costly MC simulations. Here, the TOE spends about 22 more minutes on average than the SOE because the TOE

Figure 2. The pruning thresholds of (a) NetHEPT and (b) NetPHY.

Ko et al. 678

Journal of Information Science, 44(5) 2018, pp. 671–682 � The Author(s), DOI: 10.1177/0165551517748289

https://doi.org/10.1177/0165551517748289


requires additional computations which update influence received by each target when a new seed is selected. This is

because aggregated influences of target nodes are changed by the influence from a new seed to targets in the TOE unlike

the SOE. Nevertheless, regarding more influence spread (e.g. promotional effect) gained by our TOE, this loss of 22 min

would not be a big deal for real-world businesses. In addition, once our TOE has derived a k-seed set, then the TOE can

Figure 3. Influence spread of the seed set by each algorithm: (a) NetHEPT, (b) NetPHY, (c) Epinion, (d) Stanford and (e) DBLP.
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efficiently find additional seeds (if needed) based on the pre-found k-seed set, which consumes less than 1/k of the total

running time, rather than selecting the seed set from the scratch.

6. Conclusion

IM is to find the most influential nodes (i.e. seed nodes) in social networks. Finding the optimal set of seed nodes is

known NP-hard. While a simple greedy algorithm (SimpleGreedy) based on MC simulations was proposed, it still

Figure 4. The difference in influence spread between TOE and SOE: (a) NetHEPT, (b) NetPHY, (c) Epinion, (d) Stanford and (e)
DBLP.
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suffers from performance issues in micro and macro levels. A lot of studies have been done to address performance

issues of SimpleGreedy. The path-based methods successfully resolve the performance issue in the micro level by esti-

mating the influence spread of nodes by aggregating the weights of paths from the nodes rather than running costly MC

simulations, but they do not estimate the influence spread of seed nodes accurately compared with SimpleGreedy.

In this article, we showed that the existing path-based methods are an SOE approach and pointed out the problem with

SOE which estimates the influence spread of a seed set by taking the linear sum of all the seeds’ influence in the seed

nodes’ (i.e. source node) perspective. Such SOE is opposed to SimpleGreedy whose results are considered as the ground

truth because SimpleGreedy defines the influence spread of a seed set as the number of non-seed nodes influenced by

the seed set; this indicates that the total amount of influence received by target nodes determines influence spread of the

seed set. To remedy the problem of SOE, we proposed a novel TOE approach. Our TOE aggregates the amount of influ-

ence received by each individual non-seed node (i.e. target node) from a whole set of seed nodes and then adds up those

of all non-seed nodes linearly. This approach enables TOE to consider the property of a diffusion model in the aggrega-

tion step, while SOE does not. Our experimental results demonstrate that TOE outperforms SOE as well as existing IM

algorithms in terms of the quality of the seed set on four real-world datasets, while TOE maintains comparable running

time with SOE. Moreover, the difference in the seed set quality between TOE and SOE tends to be bigger as the size of

a seed set gets larger and the seed set selected by TOE activated up to 1200 more nodes than that by SOE.

Our work on TOE mainly focuses on estimating the influence spread of nodes more accurately than existing IM algo-

rithms. Our TOE has a drawback of requiring higher computational overhead, leading to performance degradation. As

our future work, we plan to tackle the performance issue to make our TOE not only effective but also efficient.
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