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Background
oTraining of DNNs requires massive time

n DNN models are becoming more complicated
o VGG (150M params.), BERT (345M params.), GPT-3 (175B params.), …
o Ex) Training BERT with 8 NVIDIA V100 GPUs takes 2 weeks
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Distributed	Deep	Learning	
oTrain a DNN model using multiple workers

n Each worker trains its local model based on its local data
n The training results are aggregated via communication
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Centralized	Training
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oParameter server (PS) aggregates the training results
from workers and manages the global model
n There is explicit global model in PS
n PS can be a bottleneck of the training
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Decentralized	Training
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oThe training results of workers are aggregated via
peer-to-peer communication
n To avoid the problem of PS being bottleneck
n There is no explicit global model
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Goals	of	This	Work
oMotivation

n Trade-off (Performance vs Accuracy) depends on
oModels, # of workers, computing power of GPUs, network BW, …

oGoals
n Evaluate existing training algorithms in a fair way
n Conduct comprehensive analysis
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Evaluation	&	Analysis



Algorithms	for	Evaluation

9

Distributed Training	Algorithms

Centralized Decentralized

Synchronous
Bulk	synchronous	parallel	SGD	(BSP)

(Gerbessiotis et	al.,	JPDC’94)

Allreduce SGD	(AR-SGD)

(Goyal	et al.,	arXiv’17)

Asynchronous

Asynchronous parallel	SGD	(ASP)

(Recht et	al.,	NeurIPS’12)

Gossip-based	SGD	(GoSGD)

(Blot	et	al.,	arXiv’16)

Stale	synchronous parallel SGD	(SSP)

(Ho	et	al.,	NeurIPS’13)
Asynchronous

decentralized	parallel	SGD
(AD-PSGD)

(Lian et al.,	ICML’18)
Elastic	averaging SDG	(EASGD)

(Zhang	et	al.,	NeurIPS’15)



Evaluation	Aspects
oModel Accuracy
oHyperparameter Sensitivity
oScalability
oEffects of Optimization Techniques
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Experiments	setup
oModels

n ResNet-50: 25M parameters (computation-intensive)
n VGG-16: 128M parameters (communication-intensive)

oDataset
n ImageNet-1K: 1.28M training images and 5K test images

oSoftware
n DL framework: TensorFlow 1.12
n Communication library: MPICH 3.1.4

oSystem resources
n CPU: Intel Xeon CPU E5-2698 v4 (with 256 GB memory)
n GPU (worker): NVIDIA Titan V (24 GPUs in total)

o 14.90 TFLOPS, 12GB memory
n Network bandwidth (BW)

o 10Gbps Ethernet (low BW) and 56Gbps InfiniBand (high BW)
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Interesting	Findings
1. Intermittent communication to reduce the aggregation

overhead has highly negative impact on the model accuracy

2. Centralized training has a strength in model accuracy,
compared to decentralized training

3. Centralized training algorithms suffer from the problem of PS
being a bottleneck
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F1.	Intermittent	Communication
1. Intermittent communication to reduce the aggregation

overhead has highly negative impact on the model accuracy
n It causes large variance among parameters of workers

o In EASGD and GoSGD, significant loss occurs in model accuracy

n The accuracies of ASP and AD-PSGD are comparable to that of BSP
o Aggregating the training results (gradients/parameters) of all workers at every iteration
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F2.	Strength	of	Centralized	Training	
2. Centralized training has a strength in model accuracy,

compared to decentralized training
n ASP always outperforms AD-PSGD in model accuracy

o The difference tends to get larger as the number of workers increases
o (Aggregation via PS)vs (Aggregation via peer-to-peer communication)
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ASP AD-PSGD

4	workers 0.7508	(0.25%) 0.7483

8	workers 0.7482	(0.35%) 0.7447

16	workers 0.7447	(0.08%) 0.7439

24	workers 0.7459	(0.48%) 0.7411



F3.	Problem	of	Centralized	Training		
3. Centralized training algorithms suffer from the problem of PS

being a bottleneck
n The ‘waiting time’ increases as the number of workers increases

o All centralized algorithms (BSP, ASP, SSP) show poor scalability
o ASP shows always the worst speed-up results

n Decentralized training successfully avoids the communication bottleneck
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Breakdown	of	training	time	
for	VGG-16	training	in	centralized	training



Conclusions
o We fairly evaluated seven distributed training algorithms in

terms of various aspects

o We conducted in-depth analysis of the evaluation results and
reported some interesting findings
1. Intermittent communication has negative impact on the model accuracy
2. Centralized training has a strength in model accuracy
3. Centralized training algorithms suffer from the PS bottleneck problem

o We believe that our findings can be useful at industry and
academia in applying and designing distributed training
algorithms
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