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Abstract—As the popularity of deep learning in industry
rapidly grows, efficient training of deep neural networks (DNNs)
becomes important. To train a DNN with a large amount of
data, distributed training with data parallelism has been widely
adopted. However, the communication overhead limits the scala-
bility of distributed training. To reduce the overhead, a number
of distributed training algorithms have been proposed. The
model accuracy and training performance of those algorithms
can be different depending on various factors such as cluster
settings, training models/datasets, and optimization techniques
applied. In order for someone to adopt a distributed training
algorithm appropriate for her/his situation, it is required for
her/him to fully understand the model accuracy and training
performance of these algorithms in various settings. Toward this
end, this paper reviews and evaluates seven popular distributed
training algorithms (BSP, ASP, SSP, EASGD, AR-SGD, GoSGD,
and AD-PSGD) in terms of the model accuracy and training
performance in various settings. Specifically, we evaluate those
algorithms for two CNN models, in different cluster settings,
and with three well-known optimization techniques. Through
extensive evaluation and analysis, we made several interesting
discoveries. For example, we found out that some distributed
training algorithms (SSP, EASGD, and GoSGD) have highly
negative impact on the model accuracy because they adopt
intermittent and asymmetric communication to improve training
performance; the communication overhead of some centralized
algorithms (ASP and SSP) is much higher than we expected in a
cluster setting with limited network bandwidth because of the PS
bottleneck problem. These findings, and many more in the paper,
can guide the adoption of proper distributed training algorithms
in industry; our findings can be useful in academia as well for
designing new distributed training algorithms.

Index Terms—deep learning, distributed training algorithm

I. INTRODUCTION

Deep neural networks (DNNs) are widely adopted in indus-

try, and they are used to provide increasingly more com-

plex functionality. Thus, recent DNN models are becoming

more complicated, for example, with residual connections

and deeper network structures [10], [25]. These models are

trained with a large amount of data, which requires massive

training time and computing power. To speed up the training,

distributed training with data parallelism is commonly applied;

each worker machine given with a subset of training data

iteratively trains its local parameters. After each training

*Corresponding authors

iteration, workers communicate the computed gradients (or

parameters) either in a centralized manner (using parameter

servers) or in a decentralized manner (via peer-to-peer com-

munication). While distributed training is generally effective,

the aggregation overhead can be non-trivial as the number of

workers increases; particularly in a cluster with low network

bandwidth, the overhead can be much costly. A recent study

reported that the overhead can be more than 80% of the entire

training [22].

To reduce this overhead, a number of distributed training

algorithms have been studied [9], [13], [16], [18]–[20], [26],

[27]. These algorithms aim to improve the training perfor-

mance by reducing the communication overhead required for

parameter aggregation, while maintaining the model accuracy,

as much as possible. In general, the model accuracy and

training performance are in a trade-off relationship; that is,

reducing the communication overhead for the aggregation

improves the training performance, but it may have an adverse

effect on the model accuracy. Thus, in order to choose the best

distributed training algorithm, it is necessary to fully under-

stand the parameter aggregation process of each algorithm and

its effect on the model accuracy and training performance.

The model accuracy and training performance of distributed

training algorithms can be different depending on various

aspects such as cluster settings (e.g., the number of workers,

computing power of GPUs, or network bandwidth), training

models/datasets, and optimization techniques applied. For ex-

ample, some asynchronous centralized algorithms (e.g., ASP

and SSP) show much better training performance than syn-

chronous algorithms (e.g., BSP) on a network with sufficient

bandwidth, while achieving high model accuracy comparable

to that of BSP. However, they would be slower than syn-

chronous ones if network bandwidth is limited because a

specific server (i.e., a parameter server) becomes the com-

munication bottleneck. The PS (parameter server) bottleneck

problem can be resolved if an optimization technique to reduce

the amount of communication (e.g., gradient compression) is

applied. Therefore, for this reason, these distributed training

algorithms should be extensively evaluated with respect to

various aspects.

However, these algorithms have not been fully understood

in those aspects so far; they have been evaluated only in a
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specific environment of cluster settings, DNN models, DNN

frameworks, and optimization techniques. On the other hand,

it is not feasible in practice for a user to evaluate all of

the existing distributed training algorithms in various aspects

because it requires a lot of time and effort. In this paper,

we review existing distributed training algorithms in terms

of the parameter aggregation process and its effect on the

model accuracy and training performance. We implement and

evaluate the distributed training algorithms in a fair way and

perform comprehensive analysis of the evaluation results. With

the evaluation and analysis, we aim to help users select the

suitable algorithm for their own environment and provide the

guidance for designing new distributed training algorithms.

For the evaluation, we carefully select seven distributed

training algorithms including centralized and decentralized

ones that are widely recognized in the literature [6], [9], [11],

[13], [15], [16], [19], [20], [24], [26]. Table I shows the

algorithms that we evaluate in this paper. We also test them

with three well-known optimization techniques to understand

how the optimizations affect distributed training algorithms

in different settings. Only four of the seven algorithms –

BSP, ASP, SSP, and AllReduce – are already implemented

in more than one deep learning (DL) framework (Tensor-

flow [3], MXNet [2], PyTorch [5], or MS DMTK [1]). For fair

evaluation, we carefully re-implemented the seven distributed

training algorithms and three optimization techniques in the

same DL framework (Google TensorFlow). We conduct an in-

depth analysis for them in the following four aspects; (1) the

model accuracy, (2) hyperparameter sensitivity, (3) scalability,

and (4) the effectiveness of existing optimizations on them.

The remainder of this paper is organized as follows.

Section II describes the preliminary of distributed training

for DNN models in general. Sections III and IV review

the distributed training algorithms that we evaluate in this

paper. Section V describes optimization techniques that are

commonly used in DNN training. Section VI presents the

evaluation results of the distributed training algorithms and

our in-depth analysis on them. Finally, Section VII concludes

the paper.

II. PRELIMINARY

A. Deep Learning

Deep learning is a machine learning technique to train deep

neural network models (DNNs). DNNs have a series of layers

of neurons that transfer signals via weight parameters, which

collectively approximate an objective function (also called a

target function). To find the optimal values for the weight

parameters with a gradient descent technique, backpropaga-

tion is applied to efficiently compute the derivatives of the

parameters.

One particular aspect of deep learning is its large amount of

parameters – a modern DNN model can easily have hundreds

of millions of parameters [10], [14], [25]. Such a large number

of parameters are updated iteratively for each training input,

i.e., xt = xt−1 − η · �L(xt−1; ξt), where xt is a set of

parameters at training iteration t, η is the learning rate, L

is the loss function, and ξt is a set of data samples at iteration

t. Because the number of parameters is large in modern DNN

models and so does the size of a training dataset, the amount

of computations for training DNN parameters is substantially

large. To speed up the training of DNN models, parallel

hardware accelerators such as GPUs or TPUs are typically

used [8], [13].

B. Distributed Training for DNN models

With the increasing size of a training dataset and DNN model

parameters, a single GPU often cannot process DNN training

in practice. For scalable training of DNN models, distributed

training algorithms have been widely studied [6], [8], [9], [11],

[13], [15], [16], [18], [20], [24], [27]. Distributed training has

two styles – data parallelism and model parallelism. This work

focuses on data parallelism, where training data is split into

partitions, each of which is stored and learned at a worker

while all workers use the same model.

In distributed training, each iteration consists of two stages;

computation and communication. In a computation stage, each

worker trains its local parameters based on its local training

data. In a communication stage, the parameters (or gradients)

of workers are aggregated via communication, which are used

in the subsequent training iteration. For this aggregation, either

communication via a separate centralized parameter server

(i.e., centralized), or peer-to-peer communication (i.e., decen-

tralized) can be used. Such an aggregation can be performed

either synchronously or asynchronously.

In general, distributed training aims to find global parame-

ters x̃ that minimize the following equation:

min
n∑

i=1

E[L(xi, ξi)] +
ρ

2
||xi − x̃||2 (1)

where L is a loss function, xi is the set of local parameters

of worker i, and ξi is the dataset of worker i. The goal of

Eq. 1 is twofold: the first term minimizes the loss function

(thus maximizing accuracy) and the second term minimizes

the variance between local and global parameters. The global

model parameter x̃ is computed differently depending on

distributed training algorithms. We will describe details of

distributed training algorithms in Sections III and IV.

III. CENTRALIZED TRAINING

We review existing distributed DNN training algorithms in

recent literature. We found ten algorithms [6], [9], [11], [13],

[15], [16], [19], [20], [24], [26] and selected seven of them in

Table I for our evaluation based on their popularity (number

of DL frameworks supporting them), effectiveness (conver-

gence rate), and the theoretical guarantee on the convergence.

In this section and the following one, we describe those

seven algorithms focusing on the following three aspects; (1)

parameter aggregation: how does each algorithm aggregate

the parameters of workers? (2) accuracy and performance:

how effectively does each algorithm train the model in terms

of the model accuracy and training performance? and (3)

our implementation: how do we implement each algorithm,
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TABLE I
SUMMARY OF DISTRIBUTED TRAINING ALGORITHMS

Centralized Decentralized

Synchronous Asynchronous Synchronous Asynchronous

Name BSP ASP SSP EASGD AR-SGD GoSGD AD-PSGD

Converge. Rate O( 1√
NK

) O( 1√
NK

) O(
√

2(s+1)N
K

) - O( 1√
NK

) - O( 1√
K
)

Comm. Complexity O(2MN · 1
l
) O(2MN) O((1 + 1

s+1
) ·MN) O(2MN · 1

τ
) O(2MN) O(MN · p) O(MN)

addressing implementation issues? We first describe the cen-

tralized algorithms that have separate parameter servers (PS)

with global parameters x̃.

A. Bulk Synchronous Parallel (BSP)

Parameter aggregation. In BSP, the model parameters of all

workers are synchronized by aggregating the gradients from

all workers at once. In each iteration, each worker sends

its computed gradients to PS and waits for PS to return

the updated parameters. PS aggregates the gradients from

all workers, updates the global parameters using them, and

broadcasts the updated parameters to all workers.

Accuracy and performance. In BSP, each of workers has

the same parameter values since the model parameters of all

workers are synchronized at every iteration. Thus, the training

is consistent across the workers, which helps to improve the

accuracy of the trained model. The theoretical convergence

rate of BSP is known as O( 1√
NK

) [12]; here N is the number

of workers and K is the number of training iterations. Note

that the convergence rate is the difference between the current

parameters and the optimal parameters at iteration K; thus

the smaller the rate is, the faster the parameters converge to

the optimal values. However, the synchronization overhead

might be quite significant when some workers fall behind other

workers for gradient computation (i.e., straggler), which may

degrade the training performance significantly. Because every

worker sends gradients and receives the updated parameters,

the communication complexity of BSP is O(2MN), where M
and N are the numbers of parameter size and workers.

Our implementation. Note that we used TensorFlow 1.12

and MPICH 3.1.4 to implement all algorithms. We addition-

ally implemented local aggregation that reduces the amount

of communication by aggregating the gradients computed

by multiple workers (GPUs) on a same machine [9], [18].

Through local aggregation, the communication complexity is

reduced from O(2MN) to O(2MN · 1l ) where l is the number

of workers (GPUs) in a same machine. We will discuss the

effect of the local aggregation in Section VI.

B. Asynchronous Parallel (ASP)

Parameter aggregation. To improve the training performance

of BSP, PS in ASP processes the gradients from workers in an

asynchronous manner. That is, PS aggregates the gradients of

each worker, immediately updates the global parameters using

them, and then it sends the updated global parameters right

back to the worker.

Accuracy and performance. ASP does not suffer from the

straggler problem because fast workers do not wait for slow

workers. However, PS may become the bottleneck of entire

training because all of the workers communicate with PS

individually without local aggregation. In each iteration, every

worker sends gradients and receives the updated parameters,

so the communication complexity of ASP is O(2MN). We

observed that the training performance of ASP is worse than

even that of BSP on a cluster with limited network bandwidth,

which will be discussed in Section 6.

The variance among the parameters of workers could be

significant if there are workers with different training speeds,

which may adversely affect the model accuracy. Nonetheless,

the theoretical convergence rate of ASP is O( 1√
NK

) which

is same as that of BSP. We will verify the accuracy of ASP

experimentally in Section 6.

Our implementation. In order to efficiently process the net-

work I/O of PS, we made communication threads allocated to

PS as many as the number of workers. Since a communication

thread is in charge of one worker, PS can communicate with

multiple workers in parallel at the same time. To mitigate the

communication overhead of PS, we additionally implemented

the parameter sharding technique [8], [9], [18]. For fair

evaluation, we applied this optimization to all the centralized

algorithms (BSP, ASP, SSP, and EASGD).

C. Stale Synchronous Parallel (SSP)

Parameter aggregation. SSP relaxes the parameter synchro-

nization by allowing the workers to train with different pa-

rameter versions. In SSP, a threshold s is defined to represent

the maximum difference of parameter versions among work-

ers, allowed for the training. Thus, SSP guarantees that the

difference between the parameter versions of each worker and

the slowest worker is less than the threshold s.

In each iteration, each worker sends the computed gradients

to PS and decides whether it requests the aggregated global

parameters to PS based on its staleness. If the staleness of

a worker is less than the threshold, it updates its parameters

locally and proceeds to the next iteration without waiting for

PS. Otherwise, it requests the aggregated global parameters to

PS. PS aggregates gradients from each worker, immediately

updates the global parameters using them in each iteration.
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Unlike ASP, PS sends the global parameters to a worker only

if the worker requests the global parameters.

Accuracy and performance. SSP controls the model accuracy

and training performance by varying the staleness threshold

s. The larger the threshold is, the less frequently a worker

receives the aggregated global parameters from PS, thereby

improving the training performance. For example, if s is 0,

SSP is equivalent to BSP, while, if s is ∞, it is equivalent to

local training only (i.e., ensemble). The convergence rate of

SSP is O(
√

2(s+1)N
K ) and the communication complexity is

O((1 + 1
s+1 ) ·MN).

Our implementation. We implemented SSP as described in

[16]. If a worker’s staleness is within the limit of the threshold,

the worker performs two tasks; (i) sending the computed

gradients to PS and (ii) updating its local parameters using the

gradients. These two tasks are independent from each other.

To further improve the training throughput, we implemented

the two tasks to be executed in parallel.

D. Elastic Averaging SGD (EASGD)

Parameter aggregation. EASGD [26] aims to reduce the

communication overhead required for parameter aggregation

to improve the training performance. To reduce the overhead,

it adopts periodic communication between PS and workers. In

each iteration, a worker communicates its parameters with PS

every τ iterations, where τ is a hyperparameter that controls

the communication period.

Accuracy and performance. In EASGD, communication

period τ indirectly controls the training performance and

model accuracy. With a large value of τ , the workers less

frequently communicate with PS, which improves the training

performance. However, it may negatively impact the model

accuracy because the local parameters of workers are not

sufficiently aggregated to PS. The theoretical convergence

rate of EASGD is not known [26] and the communication

complexity is O(2MN · 1
τ ).

In our evaluation, we observed that the training performance

(e.g., scalability and training throughput) of EASGD is sub-

stantially better than other centralized algorithms. However,

we also observed that the accuracy of EASGD is relatively

low compared to those by other algorithms.

Our implementation. We implemented EASGD as described

in [26]. In EASGD, the global parameters and the local

parameters of each worker are updated at every τ iterations.

We made both the global parameters and the local parameters

of each worker are updated on the PS process at the same time

when a worker sends its local parameters to the PS. Thus, the

PS sends back not the global parameters but the updated local

parameters to the worker.

IV. DECENTRALIZED TRAINING

In this section, we review three decentralized training algo-

rithms; AR-SGD, GoSGD, and AD-PSGD. In decentralized

training, the parameters (or gradients) are aggregated via peer-

to-peer communication. Since there is no PS, decentralized

training does not have explicit global parameters. Implicitly

though, the average of all workers’ parameters is often con-

sidered as the global parameters in decentralized training.

A. AllReduce SGD (AR-SGD)

Parameter aggregation. AR-SGD [13] is a synchronous train-

ing algorithm like BSP. In each iteration, the model parameters

of all workers are synchronized via AllReduce communication

which collectively and synchronously aggregates the gradients

computed by all workers and distributes the aggregated gra-

dients to all the workers [4]. Then, each worker updates its

local parameters by applying the aggregated gradients.

Accuracy and performance. AR-SGD is essentially the same

as BSP in terms of the model accuracy because they both

use synchronous communication to aggregate gradients from

workers. Thus, the theoretical convergence rate of AR-SGD

is O( 1√
NK

) same as BSP. AR-SGD also has the same per-

formance problem as BSP (i.e., straggler problem) because of

its synchronous communication. While, since the aggregation

is performed via peer-to-peer communication not a separate

PS, AR-SGD does not have a PS (or specific node) bottleneck

problem.

Our implementation. We implemented AR-SGD standard

MPICH [4] where AllReduce is implemented in two steps;

Reduce-Scatter step and AllGather step. In Reduce-Scatter

step, each worker partially aggregates a disjoint subset of

gradients from all workers. In AllGather step, the partially

aggregated gradients are distributed to all workers. As a result,

all workers have the completely aggregated gradients.

B. Gossip SGD (GoSGD)

Parameter aggregation. In GoSGD [6], the model param-

eters of workers are aggregated by an asymmetric gossip

algorithm [17] proposed to aggregate information in social

networks. In each iteration, each worker determines whether

it would communicate its parameters with the probability

p, where p is a hyperparameter that controls the frequency

of communication. If a worker decides to communicate, it

chooses a target worker uniformly at random and sends its

model parameters to the target worker. Then, it proceeds to

the next training iteration without waiting for the response

from the target worker (i.e., asymmetric communication). The

model parameters of each worker are updated only when it

receives the parameters from other workers.

Accuracy and performance. In GoSGD, the communication

probability p controls the model accuracy and training per-

formance. The smaller the p is, the less frequently model

parameters of each worker are aggregated via peer-to-peer

communication, thereby improving the training performance.

However, this makes the local parameters of each worker

slowly propagated to other workers, adversely affecting the

model accuracy. We observed that GoSGD shows almost

linear speedup with respect to the number of workers, but

it has a model accuracy issue due to the infrequent parameter

communication. We will evaluate how the probability p affects

the model accuracy and training performance of GoSGD in
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Section VI. The theoretical convergence rate of GoSGD is not

known [6] and the communication complexity of GoSGD is

O(MN · p) because every worker asymmetrically communi-

cates the updated parameters with the probability p.

Our implementation. We implemented GoSGD as described

in [6]. To maximize the performance, we implemented separate

communication threads on background; thus, the computation

and communication of each worker are executed concurrently

in our implementation.

C. Asynchronous Decentralized Parallel SGD (AD-PSGD)

Parameter aggregation. In AD-PSGD [20], the model pa-

rameters of workers are aggregated via symmetric peer-to-peer

communication among workers unlike GoSGD that adopts

asymmetric communication. In each iteration, a worker (ac-

tive worker) sends its updated parameters to another worker

(passive worker), and has to wait for the passive worker to

send its parameters back. Then, the active worker updates its

parameters using the passive worker’s parameter (i.e., taking

the averages of their local parameters). The passive worker

updates its parameters using the active worker’s parameters as

well.

Accuracy and performance. As explained before, each

worker in AD-PSGD has to communicate its parameters with

another worker symmetrically. That is, the communication

for parameter aggregation among workers in AD-PSGD is

more frequent than that in GoSGD, which helps the parameter

aggregation to be more effective than GoSGD. AD-PSGD has

the theoretical convergence rate of O(1/
√
K) [20]. Although

AD-PSGD has slightly larger communication complexity,

O(MN), than GoSGD, we observed that the model accuracy

of AD-PSGD is much higher than that of GoSGD and is

comparable to those of synchronous algorithms (i.e., BSP and

AR-SGD).

Our implementation. As described in [20], we implemented

two separate threads for computation and communication. To

maximize the performance, the communication thread runs in

the background; thus, the computation and communication are

executed concurrently in our implementation. AD-PSGD may

cause deadlock: given three fully connected workers A, B,

and C, A sends its parameters xA to B and waits for xB

from B; B has already sent out xB to C and waits for xC

from C; and C has sent out xC to A and waits for xA from

A. To prevent the deadlock, [20] designs a communication

network for workers to be a bipartite graph. That is, workers

are split into active and passive workers, where all edges in

the graph connect active workers and passive workers. Active

workers are connected only to passive workers not other active

workers. As described in [20], we implemented that active and

passive workers in a bipartite graph, where only active workers

can start communication. That is, in each iteration an active

worker sends its parameters to a passive worker, and waits

for the passive worker to send its parameters back. A passive

worker sends its parameters to an active worker only when it

receives the parameters from the active worker.

V. OPTIMIZATION TECHNIQUES

In this section, we review three well-known optimization tech-

niques for distributed DNN training: parameter sharding [9],

distributed wait-free backpropagation (wait-free BP) [27], and

deep gradients compression (DGC) [21]. We will evaluate

how these optimizations affect the seven distributed training

algorithms in Section VI.

A. Parameter sharding

In a centralized training, PS aggregates the parameters (or

gradients) from workers and sends back the updated param-

eters to the workers. Because a single PS aggregating the

whole parameters may be the bottleneck of the entire training,

parameter sharding is widely applied in centralized training.

Parameter sharding divides the parameters and distributes them

into multiple PSs to process them in parallel. Via parameter

sharding, the communication and computation are distributed

to multiple PSs, thus improving the training performance. We

take sharding the parameters in a layer-wise way because a

layer is generally represented as a single data structure (e.g., a

tensor in Tensorflow) so that it can be processed sequentially.

It means that the parameters in the same layer are stored

in the same PS, which is the same way as Tensorflow [3].

This optimization is applicable to the centralized training

algorithms (BSP, ASP, SSP, and EASGD).

B. Wait-free Backpropagation (Wait-free BP)

Wait-free BP is an optimization technique to improve the

training performance by overlapping the computation and

the communication. In the backpropagation phase of DNN

training, the computation of gradients in layer L − 1 can

be done independently of the communication of computed

gradients in layer L. Once the gradients of layer L are

computed, the communication of the gradients can be done in

parallel with the computation of layer L− 1’s gradients. The

more the computation and communication are overlapped, the

shorter the training time is. This technique is applicable to

the four distributed training algorithms that send gradients not

parameters (BSP, ASP, SSP, and AR-SGD).

C. Deep Gradients Compression (DGC)

Gradient sparsification is a well-known technique to reduce

the communication overhead of distributed training by com-

pressing the size of gradients to be communicated [7], [21].

Deep gradient compression (DGC) is a variant of the gradient

sparsification technique that communicates only important
gradients in each iteration. That is, DGC sorts the computed

gradients by their absolute sizes and communicates only top

0.1% gradients; thus, 99.9% of the computed gradients are

not communicated. To prevent the accuracy loss of the trained

model, DGC applies several techniques such as local gradient

accumulation, momentum correction, local gradient clipping,

momentum factor masking, and warm-up training. This tech-

nique is applicable to the distributed training algorithms that

communicate gradients (BSP, ASP, SSP, and AR-SGD).
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TABLE II
TOP-1 ACCURACY FOR RESNET-50 ON IMAGETNET-1K.

BSP ASP SSP EASGD AR-SGD GoSGD AD-PSGD

0.7511 0.7459 0.6448 0.4528 0.7513 0.3938 0.7411
(loss) (-0.0052) (-0.1063) (-0.2983) (loss) (-0.3575) (-0.0102)

BSP ASP SSP EASGD

AR-SGD GoSGD AD-PSGD
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p
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(a) Epoch-wise converge rate (b) Time-wise converge rate

Fig. 1. Top-1 error w.r.t epochs and time for ResNet-50 on ImagetNet-1K.

VI. EVALUATION

In this section, we evaluate seven distributed training al-

gorithms and conduct an in-depth analysis of them in the

four aspects; (1) the model accuracy, (2) hyperparameter

sensitivity, (3) scalability, and (4) the effectiveness of existing

optimization techniques on them.

Models and datasets. We evaluate the seven algorithms

with widely used CNN models, ResNet-50 [14] and VGG-

16 [25]. ResNet-50 with 23M parameters is a computation-
intensive model while VGG-16 with 138M parameters is a

communication-intensive model. For the training datasets, we

use the ImageNet-1K dataset [23] composed of about 1.2M

training images and 5K test images with 1K labels.

System setting. We use TensorFlow 1.12 and MPICH 3.1.4 to

implement the seven algorithms on Ubuntu 16.04. We evaluate

those algorithms on the cluster with three machines. Each

machine has 8 NVIDIA TITAN V GPUs and Intel Xeon

CPU E5-2698 v4 with 256 GB memory, where TITAN V is

capable of executing 14.90 TFLOPS and has 12GB memory.

All machines are inter-connected by 10Gbps Ethernet and

56Gbps Infiniband network. We run two light-weight virtual

machines (Dockers) to each of the host machines. Thus,

each virtual machine is assigned with four GPUs and shares

other computing resources such as main memory and network

bandwidth. The cluster that we use consists of 6 (virtual)

machines, where each machine has four workers (GPUs).

A. Model Accuracy

Experimental goal and setup. In this experiment, we evaluate

the accuracies of the seven algorithms and their convergence

rate with respect to training epochs and time. We train ResNet-

50 on ImageNet-1K for 90 epochs, which is large enough for

the model to converge [14], using each of seven algorithms;

then, we measure the model accuracy and the errors with

respect to training epochs and time.

We conduct this experiment on the cluster with 6 virtual

machines (24 GPUs in total) connected by a 56Gbps network.

We set the batch size for each worker as 128 to fully utilize

the GPU memory. We use momentum SGD for optimization

and set momentum as 0.9, weight decay factor as 0.0001, and

learning rate η as 0.05 · n based on the learning rate scaling

rule [13]. We apply the learning rate gradual warm-up for the

first five epochs [13], which is known to alleviate the problem

of training loss fluctuation in early stage of the training, and

decay the learning rate by 1/10 at epoch 30, 60, and 80 as

described in [13], [14]. Three of the evaluated algorithms

– SSP, EASGD, and GoSGD – have hyperparameters. We

set those parameters to be the values that are used and

recommended by the authors of the algorithms [6], [16], [26].

Specifically, for SSP, we set the staleness threshold s to be 10,

for EASGD we set the communication period τ to be 8, and

for GoSGD, we set the gossip probability p to be 0.01.

Results and discussions. Table II shows the final accuracies

of ResNet-50 models trained by the seven algorithms and

Figure 1 shows top-1 test errors with respect to training epochs

and time (i.e., epoch/time-wise convergence rate). We first

observed that the two synchronous algorithms, BSP and AR-

SGD, achieve the highest model accuracy and show the best

epoch-wise convergence rate, as shown in Figure 1(a). This

is because all workers have the same parameter values via

their synchronous communication for the gradient aggregation,

which allows the training is consistent across all workers.

Next, we noticed that three asynchronous algorithms – SSP,

EASGD, and GoSGD – show much more loss in model

accuracy and much lower epoch-wise convergence rate than

others asynchronous algorithms (ASP and AD-PSGD), as

shown in Table II and Figure 1(a). The distinct difference

between the two groups is in the way how those algorithms

aggregate the parameters (or gradients). In the former three

algorithms (SSP, EASGD, and GoSGD), the parameters (or

gradients) of workers are intermittently aggregated. In SSP and

GoSGD, the communication for the aggregation is asymmetric;

a worker sends its local gradients to PS or its parameters to

another worker in each iteration, but receives the aggregated

parameters intermittently. In EASGD, a worker communicates

its parameters with PS(s) at every few iterations, and thus the

local parameters of each worker are updated with the global

parameters intermittently.

While, in ASP and AD-PSGD, the gradients/parameters

are aggregated at every iteration as explained in Sections III

and IV. This makes the variance among model parameters

of workers relatively small, thereby improving the model

accuracy. As shown in Table II and Figure 1(a), ASP and

AD-PSGD outperform the former three algorithms and are

comparable to synchronous algorithms in terms of the model

accuracy and epoch-wise convergence rate.

Here, ASP shows slightly better model accuracy and epoch-

wise convergence rate than AD-PSGD. The reason is that ASP
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TABLE III
TEST ACCURACY OF ASYNCHRONOUS ALGORITHMS FOR RESNET-50 ON IMAGETNET-1K.

BSP ASP SSP EASGD GoSGD AD-PSGD

# of workers - - s = 3 s = 10 τ = 4 τ = 8 p = 1 p = 0.1 p = 0.01 -

4 0.7514 0.7508 0.7480 0.7462 0.7028 0.7027 0.7160 0.6892 0.6775 0.7483
8 0.7509 0.7482 0.7450 0.7412 0.6357 0.6269 0.6529 0.6173 0.5845 0.7447

16 0.7496 0.7447 0.7393 0.7147 0.5416 0.5237 0.5492 0.5135 0.4922 0.7439
24 0.7511 0.7459 0.7282 0.6448 0.4709 0.4528 0.4641 0.4475 0.3938 0.7411

aggregates the gradients from workers through PS, whereas

AD-PSGD does through peer-to-peer communication. In ASP,

a worker receives the latest global parameters from PS in

every iteration, where the global parameters reflect the latest

gradients computed by other workers. On the other hand, in

AD-PSGD, at most O(n) iterations are required to receive the

newly updated parameters from other workers.

ASP and AD-PSGD show the better time-wise convergence

rate than synchronous algorithms (i.e., BSP and AR-SGD)

as shown in Figure 1(b). This indicates that the aggregation

overhead in ASP and AD-PSGD is lower than that in BSP and

AR-SGD. In BSP and AR-SGD, the overhead is not trivial

because of their synchronous communication for gradient

aggregation, particularly when there are some stragglers for

gradient computation who fall behind other workers. While,

the aggregation overhead in ASP and AD-PSGD is relatively

small because they adopt asynchronous communication. Thus,

ASP and AD-PSGD conduct more training iterations than BSP

and AR-SGD in the same time period.

B. Hyperparameter Sensitivity

Experimental goal and setup. For the five asynchronous

distributed training algorithms (ASP, SSP, EASGD, GoSGD,

and AD-PSGD), the model accuracy may vary with the num-

ber of workers. Three of the algorithms (SSP, EASGD, and

GoSGD) also have hyperparameters, which may also affect

the model accuracy. Thus, we evaluate the accuracies of the

models trained by the five algorithms by varying the number

of workers and hyperparameters of the algorithms.

We train ResNet-50 with ImageNet-1K for 90 epochs,

varying the number of workers (up to 24 workers) and measure

the accuracies of the models trained by the algorithms. We set

the batch size as 128 and the learning rate η as 0.05 · n the

same as in the previous experiment. We also apply the learning

rate warm-up technique for all the experiments here. For SSP,

we set the staleness as 3 and 10; for EASGD, we run the

experiments with the communication period τ of 4 and 8; for

GoSGD, we set the exchange probability p as 1, 0.1, and 0.01.

Results and discussions. Table III shows the results. We first

confirmed that the synchronous algorithm, or BSP, maintains

the model accuracy without loss as the number of workers

increases. In a synchronous algorithm, we note that increasing

the number of workers is equivalent to simply increasing the

total batch size in each training iteration.

Next, we observed that the accuracy of the trained model

decreases for all the asynchronous algorithms as the number

of workers increases. As the number of workers increases in a

cluster, the amount of parameters aggregated via asynchronous

communication also increases. As a result, the disparity of

the model parameters among workers becomes substantial,

resulting in the accuracy loss. The accuracy decrease is par-

ticularly notable for SSP (especially, when the staleness s is

10), EASGD, and GoSGD. As we discussed in Section VI-A,

workers in these algorithms aggregate their parameters (or

gradients) intermittently, which makes the difference of the

parameters among workers bigger than ASP and AD-PSGD.

The hyperparameters of the three algorithms (SSP, EASGD,

and GoSGD) affect the model accuracy in a similar way.

When the hyperparameters set for workers to aggregate more

infrequently, the loss of the model trained by each of them

becomes bigger; for SSP, if the staleness s gets larger (s = 10),

workers receive the aggregated parameters from PS more in-

frequently, resulting in higher accuracy loss. We observed that

the communication period τ in EASGD and the probability

p in GoSGD affect the model accuracy in a similar way as

shown in Table III.

C. Scalability

Experimental goal and setup. As the number of workers in

a cluster increases, the communication overhead required for

parameter aggregation inevitably increases. With the increase

of the overhead, the throughput per unit time (e.g., images per

sec for the ImageNet-1K dataset) of each worker decreases,

which may adversely affect the scalability of algorithms.

Thus, in this experiment, we evaluate the scalability of each

algorithm with the number of workers. Because EASGD and

GoSGD incur a substantial model accuracy loss, we exclude

the two and evaluate only the rest algorithms – BSP, ASP, SSP,

AR-SGD, and AD-PSGD.

To evaluate the scalability of the algorithms, we

train ResNet-50, computation-intensive, and VGG-16,

communication-intensive, with 1, 2, 4, 8, 16, and 24 workers

(GPUs) on 10Gbps and 56Gbps networks, and measure the

throughput per unit time of workers in each algorithm. The

training with 1 to 4 workers is done on a virtual machine.

We set the batch size for ResNet-50 and VGG-16 as 128

and 96, respectively. For the optimization techniques, we test

with the two techniques that do not affect the model accuracy

– parameter sharding and wait-free BP – to each algorithm.

Note that the baseline for all the evaluation is the throughput

of a single worker.
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Fig. 2. Scalability for ResNet-50 and VGG-16 on ImageNet-1K with the increasing number of workers.
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Fig. 3. Breakdown of training time for ResNet-50 and VGG-16 on 10Gbps and 56Gbps networks.

Results and discussions. Figure 2 shows the scalability of

the five algorithms. First, we examine the evaluation result

for ResNet-50. We observed that the training performance of

BSP and AR-SGD increases steadily as the number of workers

increases, but does not improve much even when we increase

the network bandwidth from 10Gbps to 56Gbps. To understand

the reason why the network bandwidth has little impact on

their performance, let us examine the breakdown of a worker’s

execution times for BSP shown in Figure 3. The breakdown

for AR-SGD is not shown, but it is very similar to that of BSP.

We can first observe that more than half of the execution time

is spent on the gradient aggregation in the training of BSP

with 24 workers. Because the local aggregation and global

aggregation are not affected by the network bandwidth, the

performance improvement was insignificant with the higher

network bandwidth.

For BSP, the majority (up to 80%) of the local and global

aggregations are spent on waiting for other workers. For the

local aggregation (red bar in Figure 3), a worker needs to

wait for three other workers in a same machine to finish their

computations. Although the computation time is believed to

have low variance in homogeneous clusters, we found out that

the variance in the computation is nontrivial – the difference

between fastest and slowest workers is as much as 5% of the

computation time. For the global aggregation (gray bar), the

PSs need to wait for all the gradients from the workers; this

waiting time takes up to 70% of the global aggregation time.

The actual aggregation time is only around 30%.

Now, we examine the results for ASP and SSP. As shown in

Figure 2(a), the scalability of these two algorithms is shown

much better with a 56Gbps network than with a 10Gbps

network. For these two algorithms, the communication time

takes up more than half of the total execution time (See

Figure 3(b) and (c)); thus, increasing the network bandwidth

substantially improves the total training performance. ASP and

SSP have high global aggregation time because PS aggregates

workers’ gradients in the order with which they arrive; thus,

for 8 workers, for example, a worker may need to wait for

the remaining seven workers’ gradients to be aggregated in

the worst case. We also observed that the scalability of ASP

(asynchronous one) is worse than even synchronous algorithms

(BSP and AR-SGD) on a 10Gbps network. This means that

asynchronous communication causes to make PS the training

bottleneck if the network bandwidth is limited.
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Fig. 4. Training throughput of centralized algorithms with three optimization techniques.

AD-PSGD demonstrates good scalability for ResNet-50

even though its total communication volume is as large as

ASP and larger than all the other algorithms. This is be-

cause the computation and communication in AD-PSGD are

executed independently with each other. That is, while the

parameter communication for the current iteration runs in

the background, the forward and backward computations of

the next iteration are executed at the same time. Besides,

the communication is less bursty in AD-PSGD because the

communication is distributed into multiple workers not a

specific worker (e.g., PS) unlike centralized algorithms, which

helps utilize the network bandwidth better.

Next, let us examine the result for VGG-16, which has

different characteristics from ResNet-50. The scalabilities of

all five algorithms for VGG-16 are not as good as those

for ResNet-50 as shown in Figure 2(b). This is primarily

because the parameter size of VGG-16 is much larger than that

of ResNet-50, thus, incurring more communication overhead.

The size of the parameters in each layer is significantly skewed

in VGG-16, where the size of the first fully connected layer

is particularly large (about 75% of total parameters). Because

we apply layer-wise sharding where the parameters in a layer

are assigned to a same PS; thus, the communication and the

aggregation of the parameters in that layer are the bottleneck

of the training, as shown in Figure 3(e-h).

We observe that the decentralized algorithms show better

scalability than the centralized ones – for instance, compare

ASP and SSP with AR-SGD and AD-PSGD in Figure 2(b).

In decentralized algorithms, the communication for parame-

ter aggregation is performed in a distributed manner, which

makes them more scalable. Parameter aggregation overhead

(including the waiting overhead) is more significant than the

communication overhead for VGG-16 as shown in Figure 3.

This evaluation result shows that fine-grained sharding for

parallel parameter aggregation is necessary for large DNN

models such as VGG-16.

D. Effects of Optimizations

Experimental goal and setup. In this experiment, we evaluate

the effects of the three optimization techniques on the dis-

tributed training algorithms. We train ResNet-50 and VGG-16

on ImageNet-1K with cumulatively applying three optimiza-

tions: parameter sharding, wait-free BP, and DGC. Then, we

measure the training throughput of each algorithm with 8, 16,

24 workers. DGC is an approximate optimization, unlike the

other two, thus it may have negative (or positive) effect on the

model accuracy. Thus, we also evaluate the effect of DGC on

the model accuracy for each algorithm. Before the experiment,

we empirically found the optimal ratio of PSs to workers with

profiling in the following way. We tested three different ratios

of PSs to workers in a virtual machine (a single PS (1:4),

two PSs (2:4), and four PSs (4:4)), selected the optimal ratio,

and used it for the following experiments. We conducted this

experiment on the cluster with 10Gbps and 56Gbps networks.

Note that the baseline for all the evaluation is the throughput

of a single worker.
Results and discussions. Figure 4 shows the training through-

put of the algorithms with the three optimizations are applied

cumulatively for 8, 16, and 24 workers. First, let us examine

the effect of parameter sharding. When we compare the eval-

uation results for ResNet-50 and VGG-16, the optimization

has better impact for ResNet-50. Because we applied layer-

wise sharding, VGG-16 having high variance in the parameter

sizes in each layer cannot fully take advantage of the parameter

sharding. This optimization is more effective for ASP and SSP

than BSP. This is because the local aggregation in BSP reduces

the portion for improvement by parameter sharding.
Next, let us examine the effect of wait-free BP. Wait-free

BP appears less effective than it is reported [27] in Figure 4.

It improves the training throughput by overlapping the com-

putation of gradients with the communication of the computed

gradients. Recently, the computing power of GPUs has been

substantially improved; thus, the overlapping portion of the

communication and computation becomes smaller, making the

optimization less effective.
Finally, let us evaluate the effect of deep gradient com-

pression (DGC). The main objective of DGC is to reduce

the communication overhead by communicating important

gradients only. Thus, if the communication dominates the

computation in the training, DGC may be very effective. This

is why DGC is more effective in the training for ResNet-

50 than VGG-16 and on 10Gbps than 56Gbps. As shown in
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TABLE IV
EFFECT OF DGC ON MODEL ACCURACY FOR RESNET-50 ON

IMAGETNET-1K.

BSP ASP SSP (s = 3) SSP (s = 10)

Without DGC 0.7511 0.7459 0.7282 0.6448
With DGC 0.7505 0.7440 0.7295 0.6542

Figure 4, the effect of DGC is larger in ASP and SSP than

BSP. Because in BSP the local aggregation already reduces the

communication overhead much, DGC has much smaller room

for the improvement. In ASP and SSP, the effect of DGC is

significant, especially for VGG-16 in a network with limited

bandwidth (10Gbps). Note that when DGC is applied, the two

algorithms, ASP and SSP, scale very well as the number of

workers increases.

In order to evaluate the effect of DGC on the model

accuracy, we also measure the accuracy of the model trained

by each algorithm when DGC is applied. Table IV shows the

top-1 accuracies of the algorithms with and without DGC. We

observed that the accuracies of the models trained with DGC

are comparable to or even better than those without DGC.

It indicates that DGC has no negative effect on the model

accuracy of each algorithm and at the same time it reduces

the communication overhead significantly.

VII. CONCLUSIONS

In this paper, we evaluated seven distributed training algo-

rithms (BSP, ASP, SSP, EASGD, AR-SGD, GoSGD, and AD-

PSGD) in terms of the model accuracy and training perfor-

mance. For the evaluation, we conducted extensive experi-

ments using two CNN models in various cluster settings with

various optimization techniques (parameter sharding, wait-free

backpropagation, and deep gradient compression). Through

our in-depth analysis of the evaluation results, we reported

several interesting findings. For example, some of the dis-

tributed training algorithms have large negative impact on the

model accuracy if they adopt an asymmetric and intermittent

parameter aggregation to reduce the communication overhead

required for aggregation. The communication overhead of

some centralized asynchronous algorithms (especially, ASP

and SSP) is much higher than we expected in a cluster

with limited network bandwidth because of the PS bottleneck

problem; they show training performance worse than even

synchronous training algorithms (i.e., BSP and AR-SGD).

Wait-free backpropagation is less effective than it is reported

as GPUs become more powerful these days. We believe that

our findings can be useful at industry in applying distributed

training algorithms and also at academia in designing new

algorithms for distributed DNN training.
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