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a b s t r a c t 

Influence Maximization (IM) is the problem of finding a seed set composed of k nodes that 

maximize their influence spread over a social network. Kempe et al. showed the prob- 

lem to be NP-hard and proposed a greedy algorithm (referred to as SimpleGreedy ) that 

guarantees 63% influence spread of its optimal solution. However, SimpleGreedy has two 

performance issues: at a micro level, it estimates the influence spread of a single node 

by running Monte-Carlo (MC) simulations that are fairly expensive; at a macro level, af- 

ter selecting one seed at each step, it re-evaluates the influence spread of every node in 

a social network, leading to significant computational overhead. In this paper, we propose 

Hybrid-IM that addresses the two issues in both micro and macro levels by combining PB- 

IM (Path Based Influence Maximization) and CB-IM (Community Based Influence Maximiza- 

tion) . Furthermore, we identify two technical issues that could improve the performance 

of Hybrid-IM more and propose two strategies to address those issues. Through extensive 

experiments with four real-world datasets, we show that Hybrid-IM achieves great im- 

provement (up to 43 times) in performance over state-of-the-art methods and finds the 

seed set that provides the influence spread very close to that of the state-of-the-art meth- 

ods. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The rapid growth of social network services (SNSs) such as Facebook and Twitter has greatly increased the number of

people who use SNSs. SNSs serve as a medium through which people share their opinions and knowledge with others.

Companies hope to spread the information related to themselves over a social network as much widely as possible by using

a viral marketing strategy. Towards this goal, there have been a lot of research efforts to find such users who maximize this

word-of-mouth effect in social networks [6,23,24,27,32,33,36] . 

This problem of Influence Maximization (IM) is defined as finding a seed set of k users who could maximize the influence

spread over a social network [6,27] . Kempe et al. [15] showed that finding the optimal solution to the IM problem is NP-

hard and proposed SimpleGreedy that selects the most influential node in each step and iterates this step k times to make

the seed set have k nodes. The influence spread of a node is estimated by running the Monte-Carlo (MC) simulations 10,0 0 0

times and getting their average. Kempe et al. [15] demonstrated that the final seed set obtained by SimpleGreedy guarantees

to provide over 63% influence spread of the optimal seed set. The influence spread of the seed set obtained by SimpleGreedy
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E-mail address: wook@hanyang.ac.kr (S.-W. Kim). 

https://doi.org/10.1016/j.ins.2018.07.003 

0020-0255/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.ins.2018.07.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.07.003&domain=pdf
mailto:wook@hanyang.ac.kr
https://doi.org/10.1016/j.ins.2018.07.003


Y.-Y. Ko et al. / Information Sciences 465 (2018) 144–161 145 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is typically used as the ground truth for evaluating the influence spread of the seed set by other approximate or heuristic

methods for IM in this field. 

Although SimpleGreedy makes the IM problem solvable by approximation, it still takes too much time to select the seed

set in practical sense by two performance issues: at a micro level, estimating the influence spread of a single node itself

takes a significant amount of time due to running 10,0 0 0 MC-simulations; at a macro level, after selecting a new seed at a

step, it needs to re-evaluate the influence spreads of every node in a social network. 

Many studies have been done to improve the running time while maintaining the influence spread comparable (i.e.,

allowing a small loss) to that of SimpleGreedy [2–5,7,9,11–14,16,21,29,31] . In order to address the micro-level issue, the path

based influence maximization (PB-IM) estimates the influence spread of a node by adding the weights of the paths from

the node to other reachable nodes from it. Instead of performing costly MC-simulations, PB-IM requires a simple traversal

of paths, which leads to a great amount of speed-up, thereby successfully remedying the micro-level issue. 

One excellent approach tackling the macro-level issue [29,31] exploits the property of the community structure in a social

network. They claim the influence spread within a single community is not that different from that in the whole social

network. By exploiting this property, after choosing a new seed in a step, it re-evaluates the influence spread for only those

nodes in the community where the seed has been selected. As a result, it significantly reduces the number of nodes requiring

re-evaluation, thereby significantly improving the running time of SimpleGreedy. We refer to this approach as community

based influence maximization (CB-IM) . 

We found PB-IM and CB-IM, however, still have performance issues to be further elaborated. PB-IM resolves the micro-

level issue but suffers from the macro-level issue. On the other hand, CB-IM resolves the macro-level issue but still faces

the micro-level issue. This implies that each of PB-IM and CB-IM solves only one of the two orthogonal issues in micro and

macro levels, leaving the other unsolved yet. In this paper, we propose Hybrid-IM, a hybrid method that combines PB-IM

and CB-IM together for addressing both of the two issues in micro and macro levels. 

Our Hybrid-IM consists of two stages. (1) Community detection: it partitions a whole social network into a number of

communities in order to perform efficient re-evaluation of influence spread for nodes. (2) Seed selection: it performs k

times to select and to add the most influential node into the k -seed set. It employs path based evaluation in computing

the influence spread of a node and exploits the community structure detected in the previous stage in order to identify the

nodes for re-evaluation. 

Furthermore, we identify two more technical issues that could improve both accuracy and performance of Hybrid-IM.

Accordingly, we propose two effective strategies to address them. The first issue is related to community detection in CB-

IM. CB-IM builds a graph over-simplified from the original one by removing a very large number of edges in order to detect

communities fast . While it is definitely beneficial in terms of the performance, it adversely affects the quality of the com-

munity structure due to a considerable loss of information. To address this issue, we propose a strategy called path based

community detection (PB-CD) that enables to preserve most of the information in the original graph. By employing a fast path

based approach to estimate the influence spread among communities, PB-CD could improve the quality of the community

structure significantly, while performing community detection in a fairly short time. 

The second issue is related to the cost-effective lazy forward (CELF) algorithm in CB-IM. The CELF reduces the number of

re-evaluations by exploiting the submodularity of the influence function in IM, thereby effectively resolving the macro issue

previously described [21] . This algorithm has been used in a number of its following approaches [4,5,12,16,31] . In CB-IM, a

queue (hereafter referred to as a local queue ) is assigned to each community and CELF is applied to all the queues inde-

pendently . We point out some room (described in Section 3 ) here to be improved and propose Global CELF (G-CELF) , which

significantly reduces the number of re-evaluations by effective elimination of unnecessary re-evaluations, while guaranteeing

to produce exactly the same result as that by original CELF in CB-IM. 

To show the effectiveness of our Hybrid-IM and the two strategies, we design the evaluation framework carefully and

perform extensive experiments with four real-world datasets. When we detect the community structure of a social network

with our PB-CD and select the k -seed set by using the communities, its influence spread becomes 28% larger than that

obtained by original CB-IM. It indicates that our PB-CD detects communities more accurately than the original strategy in

CB-IM. Moreover, we observe that our G-CELF improves the performance of original CELF in CB-IM by 30% in the seed

selection stage. These two results indicate that our two strategies are effective in improving Hybrid-IM with respect to both

accuracy and performance. Also, Hybrid-IM equipped with the two strategies is shown not only to improve the performance

100 times but also to select a good k -seed set whose influence spread is 28% larger, in comparison with CB-IM. Also, it

outperforms PB-IM by 43 times in performance, preserving the influence spread of a seed set close (96.2% on average) to

that obtained by PB-IM. 

The paper is organized as follows. Section 2 briefly reviews previous work related to IM. Section 3 presents our Hybrid-IM

and the two strategies for its refinement. Section 4 presents and analyzes experimental results that compare our Hybrid-IM

and other state-of-the-art methods. Finally, Section 6 summarizes and concludes this paper. 

2. Related work 

2.1. Influence maximization 

Influence Maximization (IM) is a problem of selecting a set S of k users whose influence spread over a social network is

highest [6,27,36] among any combinations of k users. A social network is modeled by a graph defined as G ( V, E ) where V
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represents a set of nodes and E does a set of edges, each of which indicates a relationship between a pair of nodes having

a weight showing its strength. Without loss of generality, this paper assumes a weight to have a range over (0,1]. The IM

problem is formally defined as follows: 

Influence maximization : Given G ( V, E ) and budget k , it is defined as finding a set S consisting of k nodes, called a k - seed

set , that maximizes the influence spread σ ( · ) of S over G . 

S = argmax S⊂V, | S| = k σ (S) 

In computing the influence spread of a node, we need to define a model that explains how influence is propagated (i.e.,

spread) over the network [15,18–20] . The independent cascade (IC) model and the linear threshold (LT) model are widely

accepted propagation models that capture the process of influence propagation in a discrete manner [15,25] . 

Finding the optimal solution to IM, however, is NP-hard because we need to consider all possible n C k k-seed sets . Kempe

et al. [15] proposed SimpleGreedy , a greedy method that adds a node having the maximum marginal gain over the network

into the seed set at each step and repeats this step k times. The marginal gain of a node represents the influence spread

additionally obtained by adding the node into the seed set. The marginal gain of node v is computed by σ (S + { v } ) − σ (S)

where the influence spread function, σ ( · ), is estimated by running the MC-simulation, a method to get the final result by

averaging the results of 10,0 0 0 simulations. In order to estimate σ ( S ), IM by SimpleGreedy makes the nodes in S become

active and starts the influence propagation process from S by the MC-simulations according to the given propagation model.

When the process is finished, the number of active nodes in the network is regarded as the influence spread of S . 

We know that a greedy algorithm guarantees to find an approximate solution that provides 63% quality of the optimal

solution when the objective function satisfies all of the three conditions: (1) non-negativity, (2) monotonicity, and (3) sub-

modularity. Kempe et al. [15] proved σ ( · ) for IM to satisfy all the three conditions. It is also noted that the influence spread

obtained with SimpleGreedy is often considered as a ground truth in the IM problem. 

SimpleGreedy, however, shows undesirable performance due to the problems occurring in two different levels: (1) at a

micro level, it evaluates the influence spread of a node by running 10,0 0 0 MC-simulations for its stability, which is very time-

consuming; (2) at a macro level, after selecting a new seed in a step, it re-computes the marginal gain of all the non-seed

nodes for the next step because their marginal gain is likely to have been changed due to the selection of the new seed. 

2.2. Existing solutions for IM 

A number of research efforts have been devoted to address the two performance issues [2–5,7,9,11–14,16,17,21,29,31] .

The path based IM (PB-IM) is a very promising solution that tackles the issue in a micro level [4,5,12,16] . It computes the

influence spread of a node by summing the weights of all the paths to other nodes starting from itself, rather than running

expensive MC-simulations. This method computes the influence spread of a node in a single traversal of paths, which is

much faster than MC-simulations. Formally, a path starting from node v to node u is defined by p = (v 1 = v , v 2 , . . . , v m 

=
u )(m ≥ 2) where v i denotes a node on the path from v to u . The weight of a path denoted as W ( p ) is computed by 

W (p) = 

m ∏ 

i =1 

w (v i , v i +1 ) , (1) 

where w (v i , v i +1 ) denotes the weight on the edge connecting v i and v i +1 . The influence of node v is computed by 

σ (v ) = 1 + 

∑ 

u ∈ O v 
σ u (v ) , (2) 

where σ u ( v ) and O v denote the influence from node v to node u and a set of nodes reachable from node v. σ u ( v ) is computed

by 

σ u (v ) = 1 −
∏ 

p∈ P v → u 

(1 − W (p)) (3) 

Finding all possible paths from a node, however, is known #P-hard [30] . PB-IM solves this problem by handling only

those paths whose weights are larger than a pre-defined threshold. Ignoring some paths having quite small weights is

unlikely to affect the accuracy of the total influence spread because the influence spread of a node mostly happens to its

nearby nodes, i.e., located closely to it. As a result, PB-IM achieves significant performance improvement over SimpleGreedy

up to three orders of magnitude while keeping its influence spread of the seed set almost identical (i.e., more than 99%) to

that of SimpleGreedy. 

To resolve the macro-level issue, Leskovec et al. [21] proposed cost-effective lazy forward (CELF) optimization that takes

advantage of the submodularity of σ ( · ). The submodularity is that the marginal gain of a node reduces as the size of S

increases. The objective function, σ ( · ), is submodular because it satisfies Eq. (4) : 

σ (S + { v } ) − σ (S) ≥ σ (T + { v } ) − σ (T ) , S ⊂ T (4)

In other words, if marginal gain of node v computed in the previous step is smaller than that of another node u computed

in the current step, marginal gain of node v in the current step should be smaller than that of node u . In this case, it is

unnecessary to compute marginal gain of node v in the current step for selecting a seed. In this manner, CELF could reduce
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a large number of unnecessary computations, thereby improving the performance of SimpleGreedy by up to 700 times while

guaranteeing to provide exactly the same seed set as that by SimpleGreedy. 

CB-IM also resolves the macro-level issue by exploiting the property of influence spread among communities of a social

network [2,13,29,31] . The influence from a node tends to be spread primarily over the nodes in its belonging community

and rarely over the nodes in other communities [8,35] . By exploiting this property, once a seed is selected in community

C i , CB-IM re-evaluates the marginal gain for only those nodes within C i (i.e., rather than for all the nodes in the network),

which reduces the number of re-evaluated nodes from n to n / m where n is the number of nodes in a network and m is

the number of communities identified. CB-IM is known to provide about 15 times speed up with preserving 90% accuracy,

compared with SimpleGreedy. 

Arora et al. [1] performed a wide set of experiments that compare the influence spread, running time, and memory usage

of existing IM algorithms and find such an IM algorithm that is preferable under different conditions. Yadav et al. [34] ap-

plied the influence maximization to real-world applications and addressed some challenges faced in real-world applications.

3. Proposed method 

3.1. Overview 

As explained in Section 1 , each of PB-IM and CB-IM solves only one among the two issues in micro and macro levels,

leaving the other unsolved yet. In this paper, we propose a hybrid approach called Hybrid-IM that combines PB-IM and

CB-IM for addressing both of the two orthogonal issues together. 

The simple combination of these CB-IM and PB-IM can further improve the running time but increases the loss of the

influence spread of a seed set. Since CB-IM evaluates the influence spread of a node only within the community to which the

node belongs, it cannot accurately evaluate the real influence spread of the node in the whole network, which may result

in the loss of the influence spread of the selected seed set. PB-IM evaluates the influence spread of a node by ignoring the

paths with weights below the pre-defined threshold because those paths have little effect on the node’s influence spread

and finding all the paths starting from a node is a #P-hard problem [30] . As the threshold gets smaller, the influence spread

of nodes is more accurately evaluated while the computation time becomes larger. On the other hand, as the threshold gets

larger, the computation time becomes smaller while the loss of the influence spread is increased more. 

To reduce the loss of influence spread, we propose a novel community detection strategy (PB-CD). Moreover, we also

propose the G-CELF strategy that improves the running time more, without any loss of influence spread. Hybrid-IM consists

of two stages: community detection and seed selection. 

Community detection . This stage divides the whole network into a number of communities for efficient seed selection in

the next stage. It is also composed of the two sub-parts, unit-community detection (UCD) and community merge (CM). 

Seed selection . Given a network divided into a set of communities in the previous stage, this stage selects a k -seed set.

Hybrid-IM estimates the marginal gain of a single node by taking path based influence evaluation. Furthermore, after a seed

is selected in step ( i ), Hybrid-IM reduces the number of nodes to be re-evaluated in step (i + 1) by exploiting the property

of communities in a social network. 

As a result, our Hybrid-IM addresses successfully the two issues in micro and macro levels. Furthermore, we refine

Hybrid-IM in order to further improve its performance and reduce the loss of the influence spread of a seed set by proposing

two strategies, PB-CD and G-CELF. In Sections 3.2 and 3.3 , we will discuss these two strategies in detail. 

3.2. Path based community detection 

In general, the quality of a community structure identified in a social network is considered high or good if it has a

property that the nodes in the same community are tightly connected to each other (i.e., high intra-connectivity), while

the nodes in different communities are loosely connected to each other (i.e., low inter-connectivity) [8] . In other words, the

existing definition of the good community structure considers only the connections among nodes in a network. Because this

definition totally ignores the influence spread of nodes among communities (i.e., the core notion in IM), it is inappropriate

to be applied to the IM problem directly. 

To this end, we need to redefine the good community structure in our IM context . In the new definition, the quality of a

community structure identified in a social network is considered high or good if it has a property that the influence of a

node in a community is spread mostly over the nodes in the same community (i.e., high intra-spread), and is rarely spread over

the nodes in different communities (i.e., low inter-spread) . We thus define the community structure to be of high quality if

the influence spread of nodes within a community is very close to that within the whole network. We note that this new

definition coincides with the philosophy behind the idea in [29,31] . 

However, if communities are detected in such a way that the influence of a node is overflowed considerably to other

communities, the difference between the influence spread of a node within a community and that on the whole network

will be significant. This subsequently leads to finding a k -seed set of low quality (i.e., having smaller influence spread).

Therefore, accurate community detection is quite important to find a k -seed set of high quality. 

One of good ways to estimate accurately the influence spread between communities is to employ MC-simulations.

Running MC-simulations, however, is very costly, which leads to a considerable amount of time required in community
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Fig. 1. Unit-community detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detection, thereby degrading the overall performance of CB-IM. For this reason, CGA [31] , one of the CB-IM approaches,

simplifies the original graph by removing a large number of edges, except for those ( live edges ) whose weight is larger than

a pre-defined threshold, and considers the influence spread between communities only based on the live edges. Thus, the

live-edge based method, employed in CGA [31] , provides an improvement only in terms of running time. 

While the small graph (over-) simplified from the original graph provides better performance, it causes significant infor-

mation loss in community detection, incurring the problems as follows: (1) a large number of actual edges are ignored; we

observed that 93% of the edges (on average) were removed in community detection of CB-IM when we follow the guideline

in [31] ; (2) the weights of live edges are ignored in the simplified graph; all live edges are treated identically. These two

problems make significant influence overflowed via these ignored edges not captured in community detection, which leads

to a failure of obtaining high-quality communities with respect to the influence spread. 

In order to overcome these problems, we propose a new strategy of path based community detection (PB-CD) that relies

on much more edges of the original graph (i.e., rather than only live edges) in estimating influence spread between com-

munities. PB-CD exploiting richer information estimates the influence propagation more accurately, thereby finding such 

communities much more desirable for seed selection. Moreover, PB-CD performs the community detection task very effi-

ciently because it takes path based evaluation of influence, rather than costly MC-simulations, unlike CB-IM. Therefore, it

could achieve both goals of accuracy and performance. Our PB-CD consists of two steps: unit-community detection (UCD) and

community merge (CM). 

Unit-Community Detection . We assign a community label to each node based on its affinity to each neighboring commu-

nity. The affinity of node v to a community C m 

is defined by Eq. (5) . 

A (v , C m 

) = 

∑ 

u ∈ (N(v ) ∩ C m ) 
w (v , u ) (5) 

where w ( v, u ) and N ( v ) indicate a weight of an edge from v to u and the set of neighboring nodes of v , respectively. The

unit-community detection runs as follows: 

(1) Initially, we assign a unique community label (i.e., node id) to every node v . 

(2) For each node v , 

(1) We compute its affinity to each of its directly connected community. 

(2) We assign v with the label of the community having the maximum A ( v, C m 

). 

(3) We repeat (2) until the labels of nodes do not change any more. 

Raghavanet al. [26] showed that the structure of unit-communities becomes stable if this process is repeated by a suffi-

cient number of times. Following [26] , we performed the unit-community detection step repeatedly, making it stop when

the community labels of all the nodes no longer change. In other words, it terminates when the affinity of every node to its

own community is the maximum. 

Fig. 1 shows how node v is assigned to a community in UCD. Fig. 1 (a) shows the original network composed of three

communities ( C 1 , C 2 , C 3 ) where v is not assigned to any community yet. Fig. 1 (b) shows the network simplified by only

those live edges having a weight larger than the threshold of 0.4. CB-IM treats live edges identically regardless of actual

edge weights. So, it assigns C 3 to v as in Fig. 1 (b) because v has two adjacent C 3 nodes and one adjacent C 2 node. On the

other hand, PB-CD assigns C 2 to v because the affinity of v to C 2 , A (v , C 2 ) = 0 . 3 + 0 . 4 + 0 . 3 + 0 . 2 = 1 . 2 , is larger than that

of v to C 3 , A (v , C 3 ) = 0 . 5 + 0 . 6 = 1 . 1 . Unlike CB-IM, PB-CD uses not only non-live edges but also their weights to find more

intimate communities in UCD. 

Path Based Community Merge . The community merge (CM) step is to merge a pair of communities by considering the

overflowed influence between the two communities after the unit-community detection (UCD) step. If the amount of the

overflowed influence between two communities is larger than a pre-defined threshold, it merges the two communities. This

merge is necessary because these two communities do not satisfy the property of a good community structure in the IM

perspective, which requires the influence spread of a node in a single community not to be so different from that in the
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Fig. 2. Process of community merge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

whole network. On the other hand, if the amount of overflowed influence between two communities is smaller than the

threshold, it indicates that they are separated well and satisfy the property of the community structure. Therefore, the two

communities should remain separately without merging. 

The overflowed influence from C m 

to C l is defined by Eq. (6) below. This is the maximum one among the overflowed

influence by every possible pair of nodes, one in C m 

and the other in C l . It is highly likely that the maximum overflowed

influence is determined by the node pair where the seed candidates with high influence spread are involved. In other words,

communities are detected from the network, considering the seed nodes that have high influence spread over the network.

IOF (C m 

, C l ) = max 
v ∈ C m ,u ∈ (N(v ) ∩ C l ) 

w (v , u ) · σ̄m 

({ v } ) 
σm 

({ v } ) (6)

σ m 

({ v }) and σ̄m 

({ v } ) in Eq. (6) indicate the influence of node v within C m 

and the influence of u outside of C m 

, re-

spectively. Thus, as IOF ( C m 

, C l ) is larger, the more influence is overflowed from C m 

to C l . The process of community merge

performs as follows: 

(1) For any pair of communities C m 

and C l , 

(1) We compute IOF ( C m 

, C l ). 

(2) If IOF ( C m 

, C l ) is larger than the pre-defined threshold, we merge C m 

and C l . 

(2) We repeat (1) until no pairs have IOF ( C m 

, C l ) smaller than the pre-defined threshold. 

Fig. 2 shows an example that the overflowed influence is under-estimated with the existing method in CB-IM. Fig. 2 (a)

shows the original network composed of two communities ( C 1 , C 2 ). Fig. 2 (b) shows the network simplified by using only live

edges having a weight larger than the threshold of 0.4 (i.e., the threshold 0.4). The existing method estimates the amount of

influence overflowed between communities by considering only the live edges, thereby ignoring the amount of propagation

through a much more number of non-live edges. This leads to the inaccurate estimation of the amount overflowed influence

between communities. 

Our PB-CM, however, estimates an affinity of node to a community and the influence overflowed between communities

by considering not only both of live and non-live edges but also their weights, which leads to more accurate estimation.

Therefore, our PB-CD strategy could help identify communities of higher quality for more accurate seed selection. 

When there is a user who has great influence spread in the network, her/his influence could spread beyond the commu-

nity which she/he belongs to. It is an inevitable loss when we take advantage of the property of the community structure

to improve the performance. However, our community detection method detects communities from the network in such a

way that it guarantees the influence of a user that spreads to other communities does not exceed the pre-defined value.

Therefore, this loss is not that much. Algorithm 1 is the whole process of our PB-CD. 

3.3. Global-CELF 

CELF resolves the macro issue of SimpleGreedy by exploiting the submodularity of the marginal gain function. In CB-IM,

a queue (referred to as a local queue ) is assigned to each community where nodes are sorted in descending order of their

marginal gains. CELF is applied to communities’ local queues independently . The whole process of original CB-IM proceeds

as follows: 

(1) We evaluate the marginal gain of every node by running MC-simulations. 

(2) We select the node having the maximum marginal gain in each community as a seed candidate . 

(3) Among the seed candidates from all communities, we finally select the seed candidate with the maximum marginal

gain as the seed at the current step. 

(4) We re-evaluate the marginal gains of all the nodes belonging to the community where the above seed has been

selected. 
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Algorithm 1 Path Based Community Detection (PB-CD). 

Input: network G (V, E) , unit-community threshold τ , merge threshold θ
Output: a set of communities C = { C 1 , C 2 , . . . , C M 

} 
1: for each v ∈ V do 

2: v .C ← a unique community l abel ;
3: end for 

4: for t = 1 to τ do 

5: for each v ∈ V do 

6: maxA f f inity ← 0 ;
7: for each C m 

∈ NeigborCommunity (v ) do 

8: if A (v , C m 

) > maxA f f inity then 

9: maxA f f inity ← A (v , C m 

) ; v .C ← C m 

;
10: end if 

11: end for 

12: end for 

13: end for 

14: isExist ← T rue ;
15: while isExist do 

16: isExist ← F alse ;
17: for each C m 

∈ C do 

18: for each C l ∈ C − C m 

do 

19: if IOF (C l , C m 

) > θ then 

20: C l ← C m 

; isExist ← T rue ;
21: break; 

22: end if 

23: end for 

24: end for 

25: end while 

26: return C; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5) We select the node having the maximum (re-evaluated) marginal gain in this community as the seed candidate for

the community. 

(6) We repeat (2)–(5) until the seed set size becomes k . 

Fig. 3 (a) shows the process of CELF in CB-IM where three communities C i , C j and C k exist. Each bar represents a local

queue and each box in a bar does a node where the number is the marginal gain of the node. A colored box indicates

the node that has already been re-evaluated and an uncolored box indicates the node that has not been re-evaluated yet.

For selecting the first seed, every box is colored because the marginal gain of every node should be evaluated. The seed

candidate, node a , in C i is selected and popped out as the seed because it has the maximum marginal gain (24) at step (1).

CELF is applied to community C i where the new seed (i.e., node a ) has been selected. The marginal gain re-evaluation starts

from node b , continues with its following nodes (i.e., c and d ) in the local queue one by one, and stops with node e because

its marginal gain (12) (not evaluated yet at step 2) is smaller than or equal to the marginal gain (12) of the above node

(i.e., c ). During this re-evaluation, node d is selected as a new candidate for C i for step 2 as in Fig. 3 (a). In seed selection,

node f in C j having the maximum marginal gain is selected among seed candidates as the next seed at step 2. This process

is repeated until the size of the seed set becomes k . 

In CB-IM, after a seed is selected, CELF is independently applied to a local queue of the community to which the seed

belongs, without any consideration on the marginal gains of seed candidates from other communities. 

Our Lemma 3.1 shows a potential that we can further eliminate unnecessary re-evaluations of marginal gains. Before

stating Lemma 3.1, we explain a property of the marginal gain of a node in CB-IM. If a seed has not been selected from

C j ( i 	 = j ) during step l to step m , the marginal gain of the seed candidate sc j from C j is not changed as shown in Eq. (7) : 

σ (S m + { sc j } ) − σ (S m ) = σ (S l + { sc j } ) − σ (S l ) (m > l) (7)

This indicates that the seed selected from C i does not change the marginal gain of nodes in C j in CB-IM. This is because

the influence spread of a node is only considered within the community. 

Lemma 3.1. Given a graph G ( V, E ), let sc j be a seed candidate in C j , and S m and S l be the seed set at step m and step l,

respectively where m > l. For any u ∈ C i , ( i 	 = j ), suppose that the marginal gain of sc j at step m is greater than the marginal gain

of u at step l, i.e., 

σ (S m + { sc j } ) − σ (S m ) ≥ σ (S l + { u } ) − σ (S l ) 
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Fig. 3. Comparison of CELF in CB-IM and G-CELF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, the marginal gain of u at step m cannot be greater than that of sc j at step m, i.e., 

σ (S m + { sc j } ) − σ (S m ) ≥ σ (S m + { u } ) − σ (S m ) 

Proof for Lemma 3.1. By submodularity , it can be observed that 

σ (S l + { u } ) − σ (S l ) ≥ σ (S m + { u } ) − σ (S m ) (m > l) 

(∵ S l ⊂ S m ) 

Then, it follows that 

σ (S m + { sc j } ) − σ (S m ) ≥ σ (S l + { u } ) − σ (S l ) 

≥ σ (S m + { u } ) − σ (S m ) 

∴ σ (S m + { sc j } ) − σ (S m ) ≥ σ (S m + { u } ) − σ (S m ) 

By Lemma 3.1, we could exploit the marginal gains of the seed candidates of the other communities to reduce the

number of nodes that need to be re-evaluated in a local queue corresponding to a current community. We note some of

the nodes in the local queue could never become the next seed node in spite of the re-evaluation of their marginal gains,

if (at least) one of the other communities has a seed candidate whose marginal gain is larger than their current marginal

gain. Therefore, in the case of re-evaluating the marginal gains of the nodes in the local queue for the next seed selection,

for any node v , if a seed candidate in other communities satisfies Lemma 3.1, the marginal gain of v does not need to be

re-evaluated since it cannot become the seed in the next step. Corollary 3.2 specifies the condition of nodes that cannot be

the seed in the next step. �

Corollary 3.2. For any sc j and u ∈ C i ( i 	 = j ), if at least one sc j exists satisfying σ (S m + { sc j } ) − σ (S m ) ≥ σ (S l + { u } ) − σ (S l ) , u

cannot be the seed at the current step. 

Proof for Corollary 3.2. By Lemma 3.1, the marginal gain of u at step m cannot be greater than that of sc j . Thus, u cannot

be the seed at the step. 

By exploiting Corollary 3.2, we can reduce the running time of the seed selection process by skipping the unnecessary re-

evaluations of marginal gains for the nodes satisfying the following conditions. If the node from C i is selected and popped

out as a seed at step l , the marginal gains of nodes in other communities C j ( i 	 = j ) are not changed ( Eq. (7) ) for the seed

selection at step m , and the re-evaluation process only for the nodes within C starts in CB-IM. However, if there exists at
i 



152 Y.-Y. Ko et al. / Information Sciences 465 (2018) 144–161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

least one sc j in other community C j ( i 	 = j ) that has greater marginal gain at step m ( > l ) than node u in C i , the re-evaluation

process of all nodes below u in C i is unnecessary by Corollary 3.2. 

Fig. 3 (a) shows the inefficiency of CELF in CB-IM where Corollary 3.2 is not applied: node a having the largest marginal

gain has been selected among seed candidates as the seed in step 1. The re-evaluation process starts from node b . The re-

evaluation of node b is necessary because the marginal gain (20) of node b is greater than that (19) of the seed candidate

(node f ) in C j . Because the marginal gain (18) of node c , however, is smaller than that (19) of node f , its re-evaluation is

not necessary by Corollary 3.2. However, the marginal gain of node c is re-evaluated in CB-IM because CELF is independently

applied to local queues without considering the marginal gain of the nodes in other communities . 

In addition, CB-IM compares the marginal gains of all the seed candidates to select a current seed at each step. When

the number of communities is M , the time complexity of this comparison is O ( M ), which can be reduced to O ( log ( M )) if we

employ other data structures such as a winner tree . Considering that M easily becomes several tens, this is not negligible in

terms of performance. 

We propose a Global CELF (G-CELF) strategy that (1) eliminates unnecessary re-evaluations of marginal gain by exploiting

Corollary 3.2 and (2) does not require to compare the marginal gains of seed candidates at each step. In contrast to CELF

in CB-IM, G-CELF maintains only a single queue , called a global queue , whose entry keeps not only the unique id ( id ) and

marginal gain ( mg ) but also the community label ( comm ) and a flag ( u.flag ) indicating the step number when the node

was re-evaluated most recently. Additionally, each community has the step number ( C.flag ) when a seed was selected most

recently from the community. Each entry is sorted in descending order of the node’s marginal gain in a single global queue.

The community label and flag information are necessary to identify the community of a node in a single global queue and

to decide whether to re-evaluate the top node or not. 

The whole process of G-CELF is described in Algorithm 2 . The marginal gains of all nodes are evaluated for the first seed

Algorithm 2 G-CELF. 

Input: network G (V, E) , seed size k , number of communities M 

Output: a seed set S

1: Q ← ∅; S ← ∅;
2: C 1 . f lag = C 2 . f l ag = · · · = C M 

. f l ag = 0 ; 

3: for each u ∈ V do 

4: u.mg = σ ({ u } ) ; u. f lag = 1 ;
5: Add u to Q; 

6: end for 

7: while | S| < k do 

8: u =top entry (node) in Q; 

9: if u. f lag > C u.comm 

. f lag then 

10: S ← S ∪ { u }; Q ← Q − { u } ; 
11: C u.comm 

. f lag = | S| ; 
12: else 

13: u.mg = σ (S ∪ { u } ) − σ (S) ;
14: u. f lag = | S| + 1 ; 

15: Reinsert u into Q and re-order it according to u.mg; 

16: end if 

17: end while 

18: return S; 

selection in step 1 and maintained in the queue (lines 3–6). The top node is selected as the seed at step 1 and popped

out of the queue. Then, starting from the new top node, the process of re-evaluation starts in Algorithm 3 order to select

next seeds until the size of the seed set reaches k (lines 7–17). For the new top node, the re-evaluation process of G-CELF

starts. If the new top node has been re-evaluated since the most recent seed from its belonging community was selected,

the re-evaluation of the node is unnecessary and the node is selected as a seed at the current step (lines 9–11). If the new

top node has not been re-evaluated since the most recent seed from its belonging community was selected, the node is

re-evaluated and re-ordered in the queue according to its new marginal gain (lines 12–15). �

Lemma 3.3. After the re-evaluation process of G-CELF is finished, the top node in the global queue always has the maximum

marginal gain in the next step. 

Proof for Lemma 3.3. Since G-CELF re-evaluates the marginal gains of the nodes in the order from the top to the bottom in

the global queue, it is natural that the marginal gains of nodes from other communities are considered together unlike CELF

in CB-IM. Thus, Corollary 3.2 holds in G-CELF, which indicates that there are no unnecessary re-evaluations occurring in CB-

IM. The nodes not re-evaluated in G-CELF cannot be a seed at the step (Corollary 3.2), thus, no re-evaluation of these nodes

does not affect seed node selection. As a result, the top node selected as the current seed by G-CELF has the maximum

marginal gain in the step and thus is identical to that selected by CELF in CB-IM. 
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Table 1 

Dataset statistics. 

Dataset NetHEPT NetPHY Stanford DBLP 

# of nodes 15K 37K 281K 655K 

# of edges 58K 231K 2.31M 3.98M 

Max in-degree 7.7 12.4 8.2 6.1 

Max out-degree 341 286 38,606 588 

Direction Undirected Undirected Directed Undirected 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This implies that our G-CELF selects the node with the maximum marginal gain exactly same as that by CELF in CB-IM

(i.e., without any loss of the influence spread), even though the number of marginal gain re-evaluations of our G-CELF is

smaller than that of CELF in CB-IM. If we repeat our G-CELF k times, we can obtain a k -seed set that is exactly the same as

the k -seed set obtained by CELF in CB-IM (Corollary 3.4) �

Corollary 3.4. Given a graph G ( V, E ) and the size of the seed set k, our G-CELF strategy selects a k-seed set which is identical to

the seed set by CELF in CB-IM. 

Corollary 3.5 (Proof for Corollary 3.4) . We proved that the node selected as the current seed by G-CELF is identical to that by

CELF in CB-IM in Lemma 3.3. Therefore, we can get a k-seed set that is identical to that obtained by CELF in CB-IM by iterating

the same process k times. 

Fig. 3 (b) shows an example case handled by G-CELF. The top node a in C i is selected as the seed in step 1. The re-evaluation

process starts from the next node b. Because node b has not been re-evaluated since a seed (node a) was selected from its

belonging community (C i ), the marginal gain of node b is re-evaluated (line 14). Node f, however, has already been re-evaluated

at step 1 and its marginal gain is not changed because node f belongs to a different community C j . Thus, its re-evaluation is

not required and node f is selected as the second seed (line 10). In this example, the number of marginal gain re-evaluations for

selecting two seeds is only 1 in G-CELF while it is 3 in CELF in CB-IM. G-CELF performs faster than CELF in CB-IM by re-evaluating

less nodes compared to CELF in CB-IM while guaranteeing to find the exact same seed set (i.e., no loss of accuracy). Algorithm 3

Algorithm 3 Hybrid-IM. 

Input: network G (V, E) , seed size k , unit-community threshold τ , merge threshold θ
Output: a seed set S

1: C ← P B − CD (G, τ, θ ) ;
2: M ← | C|;
3: S ← G − CELF (G, C, k, M) ;
4: return S; 

is the whole process of our Hybrid-IM. 

4. Evaluation 

In this section, we evaluate the effectiveness of our Hybrid-IM with four real-world datasets by answering the following

key questions in four categories: 

(1) Parameter tunning 

(a) What is the best pruning threshold α for efficient path based influence evaluation on each dataset? 

(a) What is the best edge selection threshold β for community detection on each dataset? 

(2) PB-CD Strategy 

(a) Does our PB-CD consider the influence among communities in community detection more accurately than the

existing one in CB-IM? 

(b) How is the running time of our PB-CD, compared with the existing one employed in CB-IM? 

(3) G-CELF Strategy 

(a) How much does our G-CELF improve the performance of CELF in CB-IM? 

(4) Hybrid-IM 

(a) How much does our Hybrid-IM improve the performance of existing IM methods? 

(b) How accurate is our Hybrid-IM in terms of influence spread in comparison with the existing IM methods? 

4.1. Experimental setup 

Dataset . We used four real-world datasets, NetHEPT, NetPHY [4] , DBLP [5] , and Stanford [22] whose statistics are summa-

rized in Table 1 . NetHEPT, NetPHY [4] and DBLP [5] are the datasets of a co-authorship network. Stanford [22] is the dataset

of a web graph consisting of web pages and their hyperlinks. 
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Table 2 

Best values of α for four datasets. 

Dataset NetHEPT NetPHY Stanford DBLP 

Threshold 1/320 1/640 1/160 1/320 

Fig. 4. Influence spread and running time with different β (NetHEPT). 

Table 3 

Best values of β for four datasets. 

Dataset NetHEPT NetPHY Stanford DBLP 

Threshold 0.11 0.09 0.2 0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diffusion Model . All experiments were conducted under the weighted cascade (WC) model [15,28] , which is a variation of

the IC model. Following [10,15] , we assigned the weight on edge ( u, v ) by 1/ idegree ( v ) where idegree ( v ) indicates the number

of in-coming edges of node v . 

4.2. Parameter tuning 

Q1.1. Best threshold for path pruning: α
In this experiment, we try to find the best threshold α for path pruning. If the weight of a path is smaller than α, the

path is not used for influence evaluation. This experiment aims to find the threshold value that optimizes both accurate

influence estimation and fast running time. We recorded the running time and influence spread of a seed set at every α of

1 / 5 , 1 / 10 , 1 / 20 , 1 / 40 , . . . , 1 / 1280 . The best values for Stanford and DBLP are already suggested in [16] ; we performed this

experiment only for NetHEPT and NetPHY. Table 2 shows the results providing the best values of α for four datasets. We

used this set of values for path pruning in the following experiments. 

Q1.2. Best threshold for edge selection in community detection: β
This experiment aims to analyze the distribution of edges in each network according to their weights for understand-

ing those edges useful in community detection. We can reduce the running time of community detection significantly by

excluding the edges that have negligible effect on the result of community detection. 

The experiment was as follows: we first examined the distribution of edges in each dataset by increasing β from 0 to

1 in step of 0.01; we selected a 1,0 0 0-seed set by Hybrid-IM with each value for β; we recorded the influence spread of

each 1,0 0 0-seed set and the running time required to obtain it. In all datasets, most of edges were shown to be in the range

of weights less than 0.5. More specifically, the edges in the range of weights less than 0.2 are more than 50% of the total

edges. 

Fig. 4 shows the influence spread and running time of the 1,0 0 0-seed set selected with each value for β in NetHEPT.

The x -axis represents the running time and the y -axis does the influence spread. In the range from 0.00 to 0.11 for β , the

influence spread is rarely reduced (i.e., 4%) while the running time is significantly (i.e., 43 times) reduced. However, if β
is larger than 0.2, the loss of influence spread starts to become larger than 10% although its running time is reduced less

significantly than that with 0.11. In this regard, we chose 0.11 for the final value of β in NetHEPT, which provides significant

performance improvement with insignificant accuracy reduction. We also set the best values of β for other datasets in the

same manner as shown in Table 3 . 
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Table 4 

Community detection (CD) methods. 

UCD \ CM Live based Path based 

Live based LL_CD LP_CD 

Path based PL_CD PP_CD 

Fig. 5. Difference of influence spread in a community and an entire network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. PB-CD Strategy 

We performed the experiment to verify the effectiveness of our PB-CD. First, to answer Q2.1, we examine whether PB-CD

detects a better community structure by considering the influence overflowed between communities than existing methods.

Second, to answer Q2.2, we compared the running times of community detection by our and existing methods. 

Q2.1. Overflowed influence 

We define a set of communities to be of high quality if the influence spread of a node within a community is very close

to that within the whole network. In this paper, we claim that the influence spread of the seed set selected in a set of

communities of high quality is larger than that of the seed set selected in a set of communities of low quality. 

To demonstrate the effectiveness of our PB-CD in the IM context, we performed the following two experiments. After

detecting communities using each community detection method, we first compared the influence spread of a node in the

whole network with that within a community. We also examined the total influence spread of the k -seed set selected from

the set of communities obtained by each of different community detection methods. These two experiments could show the

effectiveness of the proposed PB-CD directly and indirectly over existing ones. 

We set the best threshold for community merge in the same manner as used in [31] : we detect the community with

increasing the threshold from 0.1 to 0.6 in step of 0.1 and finds the best one in terms of influence spread and performance.

In order to show the effectiveness of two sub-parts (i.e., unit-community detection and community merge) individually ,

we build four methods of community detection by all possible combinations, which are described in Table 4 , where rows

indicate how to detect unit-communities and columns do how to merge communities. 

LL_CD refers to the community detection with live-edge based UCD and live-edge based CM, which is equal to CB-IM’s

original community detection method, while PL_CD refers to that with path based UCD and live-edge based CM, which is

to show the effectiveness of the path based method in UCD. LP_CD refers to that with live-edge based UCD and path based

CM, which is to demonstrate the effectiveness of the path based method in CM. Finally, PP_CD refers to the community

detection method with path based UCD and path based CM, which is equal to our PB-CD. 

Fig. 5 shows the average difference between the influence spread of a node in the whole network and that within a

community. The proposed PB-CD (i.e., PP_CD) shows the smallest difference between the influence spread of a node in the

whole network and that within a community among all the competing methods. This indicates that the PB-CD is the best

method that detects the communities of high quality in the IM context. 

Fig. 6 shows the results in terms of the influence spread. The x -axis represents CD methods, and the y -axis does the

influence spread. We observe that PL_CD improves LL_CD by 2.2% on average, implying that path based UCD is more effective

than the live-edge based one. This is because live-edge based UCD ignores a number of non-live edges whereas our path

based UCD uses most of edges and even their weights. 
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Fig. 6. Comparison of CD methods in terms of influence spread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of LL_CD and LP_CD show that our path based CM provides larger influence spread than the live-edge based

CM by 7.5%, 5.5%, 4.7%, and 3.3% in NetHEPT, NetPHY, Stanford, and DBLP, respectively. This is because the over-simplified

graph obtained by live-edge based CM has a large information loss (i.e., edges and weights), which leads to the failure of

performing correct community merge. On the other hand, our path based CM utilizes more information related to edges

and weights, which could help find a good community structure that accurately considers the overflowed influence among

communities. 

Finally, our method, PP-CD, is shown to outperform universally all other combinations for all the datasets. The results

of LL_CD and PP_CD show that the our PB-CD provides larger influence spread by 9.8%, 6.1%, 12.8%, and 4.6% in NetHEPT,

NetPHY, Stanford, and DBLP, respectively, than CB-IM’s original community detection. The result shows that the communities

detected by our PB-CD help find a seed set providing the biggest influence spread. Based on the two results, we conclude

that the proposed PB-CD is the most effective in detecting high-quality communities in the IM context. 

Q2.2. Running time 

This experiment is to show the degree of performance improvement by our path based strategy in community detection.

We recorded the running time of the four combinations in Table 4 . Fig. 7 shows the results with four datasets. The x -axis

represents CD methods, and the y -axis does their running times. 

PL_CD shows a result somewhat slower than or comparable to that by LL_CD. This is because PL_CD requires an additional

overhead to compute the affinity score of every node and uses more edges than LL_CD. LP_CD is shown to perform worse

than LL_CD with all four datasets because LP_CD takes more time in CM to process much more edges and their weights.

However, since LP_CD uses path based influence evaluation, it performs community detection within a reasonable time. Note

that the results of LP_CD in terms of influence spread are much superior to those of LL_CD. 

Finally, our PB-CD (i.e., PP_CD) is a little slower than the existing method (i.e., LL_CD). This is because LL_CD has better

performance owing to an over-simplified graph while PP_CD detects communities using much more edges and their weights

in both UCD and CM. In Section 4.5 , we will compare the total running times of Hybrid-IM and CB-IM in more detail. 

4.4. G-CELF Strategy 

Q3. Running Time 

In this experiment, we compare the running times of two Hybrid-IMs to select 10 0 0 seeds using our G-CELF and using

original CELF in CB-IM. Fig. 8 shows the running times on four datasets. The x -axis represents the strategies equipped, and

the y -axis does the total running times. We see that G-CELF consistently outperforms the existing one by 21.1%, 26.1%, 2.1%,
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Fig. 7. Comparison of CD methods in terms of running time. 

Fig. 8. Comparison of CELF strategies (running time). 
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Fig. 9. Comparison of IM methods (running time). 

 

 

 

 

 

 

 

 

 

 

 

 

 

47.1% in NetHEPT, NetPHY, Stanford, and DBLP, respectively. The reasons of the improvement are two folds: (1) the number

of marginal gain re-evaluations for nodes is reduced a lot; (2) the comparisons among seed candidates from communities

are not required any longer. 

4.5. Hybrid-IM 

Q4.1. Running Time 

Let us now examine the effectiveness of our Hybrid-IM in comparison with other state-of-the-art methods. We measured

the running time of each method with different sizes (1 to 10 0 0) of a seed set. 

Methods . We compare the following IM methods: Random is a baseline that selects a seed node randomly in each step.

SDD (single degree discount) selects a node having the highest degree; after a seed is selected, the degree of all its neigh-

bors is decreased by 1. CELFGreedy is the greedy algorithm with CELF [21] . It runs 10,0 0 0 MC-simulations to estimate the

influence spread of a seed set. We chose CGA [31] as CB-IM, which is to select k -seed set after the live-edge based commu-

nity detection (in the same wasy as LL_CD in Section 4.3 ) is performed, and chose IPA [16] as PB-IM, which performs in the

same way as Hybrid-IM that does not employ the community detection stage. Finally, Hybrid-IM is our proposed one. 

Fig. 9 shows the results where the x -axis represents the number of seeds and the y -axis represents their running time

(log-scale). Note that we include the time spent to detect communities when measuring the running time of CB-IM and

Hybrid-IM for fair comparisons. 

Hybrid-IM outperforms all existing IM methods for every dataset, except for Random. Random is very fast but provides

the seed set of extremely low quality. Following Hybrid-IM, PB-IM and SDD show relatively short running times. Finally,

CB-IM performs worst. The execution of CB-IM and CELFGreedy is not completed in a reasonable time with Stanford and

DBLP, and thus their results are not reported here in Figs. 9 and 10 . 
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Fig. 10. Comparison of IM methods (influence spread). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hybrid-IM selects a 10 0 0 seed set about 100 times faster than CB-IM in both NetHEPT and NetPHY. This is because

Hybrid-IM solves the micro issue by estimating the influence spread of a node without running MC-simulations. The

running times of Hybrid-IM and CB-IM increase more slowly, compared with others, as the size of a seed set grows. This

is because they successfully reduce the number of re-evaluations by taking advantage of the property of communities in a

social network. 

Also, Hybrid-IM outperforms PB-IM for all the datasets. Initially, Hybrid-IM shows similar performance to PB-IM. This

is because Hybrid-IM requires a fixed amount of time for community detection. However, it starts to perform better than

PB-IM and continues to widen their performance gap as the size of the seed set increases. Specifically, Hybrid-IM is about

43, 30, 4, and 40 times faster than PB-IM in NetHEPT, NetPHY, Stanford, and DBLP, respectively. Surprisingly, Hybrid-IM even

outperforms SDD by 2.17 times in DBLP. It selects the seed set faster than SDD in DBLP when the size of the seed set is

larger than or equal to 500. 

Q4.2. Influence spread 

In this experiment, we examined the influence spread of a seed set obtained by our Hybrid-IM, in comparison with that

by existing IM methods used in Q4.1. We made each method select 10 0 0 seed nodes and evaluated their influence spread

by running MC-simulations. Fig. 10 shows the influence spread of the seed set by each method where the x -axis represents

the number of seeds and the y -axis represents the influence spread. 

CB-IM finds a seed set whose influence spread is lower than that obtained by Hybrid-IM by 26% and 30% in NetHEPT

and NetPHY, respectively. This low quality of CB-IM’s seed sets is due to the community detection using an over-simplified

graph . This result shows that our PB-CD is superior in community detection to the original one in CB-IM. 

SDD shows 22.9%, 33%, 40.6%, and 5.2% influence spread lower than our Hybrid-IM on the four datasets. SDD is a heuristic

method which selects a node having the highest degree as a seed in a step. Once a seed is selected, SDD reduces the degree

of all the nodes connected to the seed by 1 for the next node selection. This is intended to mitigate the problem of the



160 Y.-Y. Ko et al. / Information Sciences 465 (2018) 144–161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

overlapping influence spread of neighbouring nodes to be computed more than once. In the three datasets, other than the

Stanford dataset, SDD selects a seed set not only in a very short time but also with influence spread comparable to Hybrid-

IM and PB-IM. The result is due to the characteristics of those datasets. They represent co-author relationships among

authors where the degree of a node is low since an author tends to have a small number of her/his co-authors. As a result,

the effect of decreasing the degree of neighbouring nodes of the seed appears significant. On the other hand, in the Stanford

dataset with the max-degree of 38,606, the effect of decreasing the degree of a node by 1 is insignificant, which causes the

influence spread of the seed set selected by SDD to be lower than the other methods. As a result, SDD showed the worst

result in the Stanford dataset. 

Finally, Hybrid-IM shows almost same influnce spread to CELFGreedy and PB-IM when the size of the seed set is under

100. With the increasing seed set size, Hybrid-IM shows 3.73% lower influence spread on average than PB-IM. In more detail,

it shows 96%, 95.5%, 93.9%, and 99.4% of the influence spread obtained by PB-IM in NetHEPT, NetPHY, Stanford, and DBLP,

respectively. This (small) loss of influence spread comes from the community based selections. On the other hand, Hybrid-

IM improves the running time of PB-IM greatly up to 43 times. This result demonstrates that the very small loss caused by

our community detection method contributes to great improvement in performance 

Therefore, SDD can be a good alternative only when the node degree in the dataset is low and the time for seed selection

is crucial. PB-IM and CELFGreedy could be considered more suitable to IM than Hybrid-IM when we want a seed set having

the higher influence spread, given with sufficient time for seed selection. The proposed Hybrid-IM could be a good choice

when people want a seed set having high influence spread (i.e., very little loss) with a much smaller execution time, which

will be typical in real-world applications where a time constraint exists. 

5. Conclusions 

In this paper, we proposed a hybrid approach, Hybrid-IM that combines PB-IM and CB-IM, in order to resolve the micro

and macro level issues together in the IM problem. To refine it more, we identified two additional issues and proposed two

strategies that address them. The first one is the PB-CD strategy that considers influence propagation more accurately in

community detection. The second one is the G-CELF strategy that further optimizes seed selections from multiple commu-

nities without any sacrifice of accuracy. Through extensive experiments on four real-world datasets, we demonstrated that

(1) our strategies are all effective as a component and that (2) Hybrid-IM selects a seed set that provides the comparable

influence spread to the best state-of-the-art methods but achieves great improvement in running time over them. 
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