
MASCOT: A Quantization Framework for Efficient
Matrix Factorization in Recommender Systems

Yunyong Ko∗1, Jae-Seo Yu∗1, Hong-Kyun Bae1, Yongjun Park1, Dongwon Lee2, and Sang-Wook Kim†1
1Hanyang University, Seoul, Republic of Korea

{koyunyong, wotj08090, hongkyun, yongjunpark, wook}@hanyang.ac.kr
2The Pennsylvania State University, University Park, PA, USA

dongwon@psu.edu

Abstract—In recent years, quantization methods have success-
fully accelerated the training of large deep neural network (DNN)
models by reducing the level of precision in computing operations
(e.g., forward/backward passes) without sacrificing its accuracy.
In this work, therefore, we attempt to apply such a quantization
idea to the popular Matrix factorization (MF) methods to deal
with the growing scale of models and datasets in recommender
systems. However, to our dismay, we observe that the state-of-the-
art quantization methods are not effective in the training of MF
models, unlike their successes in the training of DNN models.
To this phenomenon, we posit that two distinctive features in
training MF models could explain the difference: (i) the training
of MF models is much more memory-intensive than that of DNN
models, and (ii) the quantization errors across users and items
in recommendation are not uniform. From these observations,
we develop a quantization framework for MF models, named
MASCOT, employing novel strategies (i.e., m-quantization and g-
switching) to successfully address the aforementioned limitations
of quantization in the training of MF models. The comprehensive
evaluation using four real-world datasets demonstrates that
MASCOT improves the training performance of MF models
by about 45%, compared to the training without quantization,
while maintaining low model errors, and the strategies and
implementation optimizations of MASCOT are quite effective in
the training of MF models. For the detailed information about
MASCOT, we release the code of MASCOT and the datasets at:
https://github.com/Yujaeseo/ICDM-2021 MASCOT.

Index Terms—quantization, matrix factorization, precision
switching, recommender systems

I. INTRODUCTION

Quantization is a widely adopted technique to accelerate
the model training in a machine learning research field.
To efficiently perform the computing operations (e.g., for-
ward/backward passes) in the model training, quantization
converts the parameter values represented by a 32-bit precision
(i.e., FP32 or single precision) into a lower precision (e.g.,
FP16 or half precision). As training progresses, however,
the computing results (e.g., gradients at the backward pass)
may become too small to be represented under the quantized
precision, which may lead to the increase of model errors. To
address this problem, a precision switching method has been
widely applied [1], [2]. The training with precision switching
is processed as follows: it starts with low precision (thus,
all computing operations are performed with low precision);

∗The first two authors have equally contributed to this work.
† Corresponding author.

ML10M ML25M Netflix Yahoo!Music

0.8

1.0

1.2

R
el

at
iv

e
tim

e

MPT MuPPET AFP

Fig. 1: Poor effects of three state-of-the-art quantization meth-
ods when applied to train a MF model (The relative time of
1 in the Y-axis indicates the baseline performance of FP32).

as the training progresses, the error caused by low precision
(i.e., quantization error) is measured; if the error exceeds the
pre-defined threshold, precision switching is applied where
low precision for computing operations is switched back to
high precision (e.g., FP32) to prevent the loss of model
accuracy. Many existing quantization methods have attempted
to improve the training performance of deep neural network
(DNN) models that require massive computational costs in
computer vision. For example, [1], [2] improve the training
performance of popular convolutional neural network (CNN)
models (e.g., AlexNet, ResNet, and GoogleLeNet) by about
30% to 64%, compared to the training with FP32.

On the other hand, collaborative filtering (CF) [3]–[5] is one
of the most widely adopted techniques in recommender sys-
tems that accurately recommends favorable items to users by
analyzing their feedback (e.g., star rating or browsing history)
on items [6]–[8]. In particular, matrix factorization (MF) [9]
is a class of popular CF algorithms. Recently, a growing scale
of users/items and complicated model architectures make the
size of the model significantly increasing, which greatly slows
down the training of a recommendation model. As such, it
becomes a very important issue to be able to efficiently train
the recommendation models, especially MF models, to deal
with the growing scale of models and datasets in recommender
systems [10], [11].

Recently, DNN models have achieved great successes in
many applications including recommender systems [12]–[14].
However, MF models have also been widely used as a way to
implement CF. In particular, MF models have various advan-
tages over DNN models. First, MF models provide competitive
recommendation accuracy, comparable to or even better than
that of more-complex DNN models. MF models predict a

https://github.com/Yujaeseo/ICDM-2021_MASCOT

user’s preference to an item based on the similarity between
the user and the item, where the similarity is computed by
the dot-product of two latent vectors of the user and item. Re-
cently, [15] showed that this dot-product based similarity could
be a better choice than that of DNN models in recommender
systems. [15]–[17] empirically reported that well-designed MF
models have achieved accuracies higher than those of more-
complex DNN models. Second, both training and inference of
MF models require less time than those of DNN models since
the amount of model parameters and computational overhead
in MF models are often smaller than that in DNN models. As
such, MF is an excellent recommendation model to attempt to
improve its training scalability by means of quantization.

Then, a natural question to raise is “Can the proven quan-
tization idea for DNN models be adopted to scale up MF
models in recommender systems?” To answer this question,
we evaluated the effects of three state-of-the-art quantization
methods (i.e., MPT [18], MuPPET [1], and AFP [2]), proposed
to improve the training of DNN models, on the training of a
MF model using four real-world datasets. Figure 1 shows the
results, where the y-axis represents the relative training time of
existing quantization methods, compared to the training with
single precision (i.e., FP32). The results show that all existing
quantization methods are rarely effective or even degrade
the training performance, which is completely different from
their reported effects on the training of DNN models. This
unexpected result implies that the training of MF models has
distinct features unique from that of DNN models.

From this motivation, we conducted an in-depth analysis
on the training of both MF and DNN models, and ob-
served two unique features in the training of MF models:
(Observation 1) the training of a MF model is much more
memory-intensive than that of a DNN model, and (Observation
2) in the training of MF models with recommendation datasets,
the quantization error of each user/item is different from
each other, depending on the number of ratings that each
user/item has. Based on these observations, we propose a
quantization framework for efficient training of MF models
in recommender systems, named Memory quAntization and
group baSed preCisiOn swiTching (MASCOT). MASCOT
employs two novel strategies to address the unique features
of the training of MF models: (i) a quantization strategy (m-
quantization) to improve the memory access operations and
(ii) a group-based precision switching strategy (g-switching)
to reflect the difference among the quantization errors across
users/items.

To further improve the training of MF models, we adopt
a heuristic method to efficiently and accurately estimate the
quantization error for each group, and carefully implement
MASCOT to efficiently handle the additional overhead during
the training by fully exploiting the computing resource of the
GPU such as caches and registers.

To the best of our knowledge, this is the first work to
scale up the training of MF models using “quantization” with
precision switching. The main contributions are as follows:
• Discovering that existing state-of-the-art quantization tech-

niques are rarely effective in the training of MF models
through the experiments with four real-world datasets.

• Observing two unique features of the training of MF models:
(i) the training of MF models is much more memory-
intensive than that of DNN models and (ii) the quantization
error of each user/item differs, depending on the number of
ratings.

• Proposing a quantization framework for efficient training
of MF models in recommender systems, named MASCOT,
by employing two novel strategies to address the unique
features of the training MF models.

• Comprehensive evaluation verifying the effectiveness of
MASCOT in the training MF models, improving the train-
ing performance by about 45% on average (almost ideal),
compared to the training without quantization.

II. RELATED WORK

Recently, various quantization methods have been studied
and successfully accelerated the training of large DNN mod-
els by reducing (i.e., quantizing) the level of precision in
computing operations [1], [2], [18]–[26]. The process of the
model training with a quantization method is as follows: (i)
reading the model parameters stored with high precision and
reducing their precision (e.g., INT8, FP16); (ii) performing
the computing operations (forward/backward passes) with low
precision; (iii) increasing the precision of gradients computed
at the backward pass (e.g., FP32); and, (iv) updating the model
parameters by applying the gradients. As such, the perfor-
mance improvement by quantization becomes larger as the
number of computing operations performed with low precision
increases, as in (ii). Let us explain two types of quantization
approaches: fixed quantization and dynamic quantizaion.

Fixed quantization. In the fixed quantization methods [18],
[23], [24], [26]–[28], a specific low precision is fixed for com-
puting operations (e.g., forward/backward passes) and used
during the entire training. [27], [28] use low precision only
for the operations at the forward pass (i.e., not at backward
pass). Thus, the computing operations at the backward pass
are performed in high precision, thereby computing gradients
more accurately. [18] and [26] employ FP16 and FP8 for
forward and backward passes, respectively. Furthermore, [23]
and [24] consider that the precisions required to maintain
model accuracy are different according to the types of pa-
rameters (i.e., activation, activation gradient, weight gradient).
[23] uses FP16 and FP8 for the operations with respect to
weight gradient and activation gradient, respectively. Via the
different precision for each type of parameters, [23] achieves
more performance improvement than [18] that only uses FP16,
and maintains model errors lower than [26] that only uses FP8.

Dynamic quantization. Fixed quantization, however, has a
limitation in which the error caused by performing the com-
puting operations in low precision (i.e., quantization error)
increases as training progresses, which may lead to a signif-
icant loss in the model accuracy. In order to address this,
dynamic quantization methods have been proposed in [1],

5 2 ⋯ 1
4 4 ⋯
3 3 ⋯
⋮ ⋮ ⋮ ⋱ ⋮
5 ⋯ 3

2.7 ⋯ 0.5
0.9 ⋯ 0.3
0.9 ⋯ 1.5

⋮ ⋱ ⋮
1.9 ⋯ 0.2

0.3 0.7 1.5 ⋯ 1.2

⋮ ⋮ ⋮ ⋱ ⋮
1.6 0.5 0.1 ⋯ 2.5

4.9 1.5 3.5 ⋯ 1
3.5 2.4 4.0 ⋯ 1.9
3.0 3.5 4.5 ⋯ 0.5

⋮ ⋮ ⋮ ⋱ ⋮
4.8 1.3 3.4 ⋯ 3.2

≈ ×

𝑹 𝑷 𝑸𝑻 𝑹-

=m
n k

n

m

n

Fig. 2: The architecture of a matrix factorization model.

[2]. These methods measure the quantization error as the
training progresses. Then, if the quantization error exceeds
the pre-defined threshold, they dynamically switch the low
precision for computing operations to higher precision (e.g.,
FP32) in the middle of the training. Specifically, [1] uses the
gradient diversity [29] as a metric for the quantization error.
Gradient diversity [29] quantifies the degree to which individ-
ual gradients are different from each other (i.e., dissimilarity
among gradients), which can effectively detect small gradients
considered as zeros with low precision. On the other hand, [2]
uses the mean difference of gradients before and after applying
the quantization as the metric for the quantization error.

III. THE PROPOSED FRAMEWORK: MASCOT

In this section, we identify the unique features in the training
of MF models in recommender systems. To address the unique
features, we propose a novel quantization framework for
efficient matrix factorization, named MASCOT.

A. Matrix Factorization

We review a MF model [9] that we focus on. As illustrated
in Figure 2, a MF model maps users and items to latent space
of dimensionality k, where each user u is associated with a
vector pu ∈ Rk and each item i is associated with a vector
qi ∈ Rk. The resulting dot product, pu · q>i , represents user
u’s overall interest in item i’s features, approximating user u’s
rating of item i (i.e., predicted rating, r̂u,i = pu · q>i). The
goal of the MF is to obtain the latent feature matrices P and
Q, satisfying R ≈ P ×Q>, given the rating matrix R and the
dimensionality of the latent space k. To this end, the objective
function L of a MF model is defined as represented in Eq. 1.

L(P,Q) =
∑

(u,i)∈R

(ru,i−puq>i)2+λP ‖pu‖2F +λQ‖qi‖2F (1)

where ru,i is the observed rating, λP and λQ are regularization
parameters for users and items, respectively, and ‖·‖F denotes
the Frobenius norm.

Stochastic gradient descent (SGD) optimization is widely
used to train MF models [30], [31]. The training of a MF
model with SGD is processed as follows. For each rating ru,i,
the system estimates r̂u,i through a dot product of the latent
vectors pu and q>i , and compute the prediction error (i.e.,
eu,i = ru,i−r̂u,i). Then, it computes the gradients with respect
to pu and qi. Finally, it updates pu and qi in the opposite
direction of the gradients as represented in Eq 2 and Eq 3.

pu ← pu + η · (eu,i · qi − λP · pu) (2)

Feature map

b

n

n

Sliding …
(𝑛 − 𝑑 + 1)(

Filter (𝑑()

(a)

(b)

User vectors P

Item vectors Q
k

b
b

Vector dot
product
(𝑏 ∗ 𝑘)

⋯

𝒓.
m

n

k

Convolution
(𝑏 ∗ 𝑑(∗ (𝑛 − 𝑑 + 1)()

b ×

Fig. 3: (Observation 1): the training of MF models (a) is much
more memory-intensive than that of DNN models (b).

qi ← qi + η · (eu,i · pu − λQ · qi) (3)

where η is the learning rate. These steps are repeated through
all ratings in the training set. We note that for each rating ru,i,
only the corresponding latent vectors, pu and qi, are updated,
not all latent vectors in the model. After the training is over,
given a target user u, the model predicts ratings for the items
that have not been rated by the user, using the two trained
latent matrices P and Q. Based on the predicted ratings, the
most favorable items are recommended to the target user u.

B. Quantization for Memory Access: m-quantization

As described in Section II, the performance improvement
by the quantization method can increase as the more number
of computing operations are performed in low precision. As
shown in Figure 1, however, existing state-of-the-art quantiza-
tion methods [1], [2], [18] are rarely effective in the training
of MF models or even degrade the training performance (See
Figure 1). Now, let us figure out the distinct features of the
MF model training, causing the unexpected result.

To identify the cause of the unexpected result in Figure 1,
we compare the training of MF and DNN models. We, first,
analyze the training process of a CNN model, which is one
of the most popular DNN models and the target of existing
quantization methods. Figure 3(a) shows the process of a
convolution layer in the CNN model. where we assume that
the batch size is b, the image size is n × n, the filter size
is d × d, and the stride is 1. First, b training images and the
parameters of the filter are read, and then the filter is applied to
each image with stride=1. At this time, the required memory
access cost is b ∗ n2 + d2 for reading the training images and
the parameters of the filter, while the computational cost is
b∗d2∗(n−d+1)2. Thus, the ratio of the computational cost to
memory cost is b∗d2∗(n−d+1)2

b∗n2+d2 . For example, when the image
size is 32×32 and the filter size is 3×3, the ratio is 7.84, and
when the image size is 224× 224 and the filter size is 5× 5,
the ratio is 24.10. Therefore, as the size of data (image) and
parameters (filter) increases, the DNN model training is getting
more computation-intensive, which indicates that the room for
the performance improvement by quantization is sufficient.

ML10M ML25M Netflix Yahoo!Music
0.4

0.6

0.8

1.0
Baseline

R
el

at
iv

e
tim

e
20% 40% 60%

Fig. 4: The potential of the m-quantization strategy for im-
proving the training performance of the MF model.

Next, we analyze the process of MF model training. Fig-
ure 3(b) shows the dot products of latent vectors of users and
items to compute the predicted ratings, where the batch size is
b and the dimensionality of the latent vector is k. First, given
b ratings, it reads b user and item vectors corresponding to
the ratings from P and Q, respectively, and then compute
the predicted ratings by taking dot products of the latent
vectors. Here, the required memory access cost is b ∗ 2k,
while the computational cost is only b ∗ k. The ratio of the
computational cost to memory cost is b∗k

b∗2k = 0.5, which
means that in the training of MF models, the memory cost
is always larger than the computational cost regardless of
the batch size and the dimensionality of the latent space.
Therefore, MF model training is memory-intensive, and there
is little room for performance improvement by quantization.

Through this analysis of the training processes of the DNN
and MF models, therefore, we observe that the training of
MF models is much more memory-intensive than that of the
DNN model (Observation 1). From this observation, we posit
that it is likely to be the reason why the existing state-of-
the-art quantization methods are not effective in the training
of MF models. As a solution, then, we propose a novel
quantization strategy for memory access (m-quantization).
The m-quantization stores and manages the parameters of MF
models in low precision (i.e., FP16). Thus, m-quantization
improves the performance of the training of MF models by
reducing the costs for the memory-accessing operations. In
the case of Figure 3(b), given b ratings, the memory cost of
the MF model training can be reduced from 2b ∗ k to b ∗ k.

To verify the potential of m-quantization, we conduct a
preliminary experiment. We apply m-quantization to the ran-
domly selected 20%, 40%, and 60% of latent vectors of
users and items, train the MF model (k=128) on four real-
world datasets using the three versions, and measure their
training time. Figure 4 shows the results where the y-axis
represents the relative time of the training, compared to the
training with single precision (i.e., no quantization). As clearly
demonstrated in Figure 4, the higher percentage of latent
vectors m-quantization is applied to, the shorter the training
time becomes. This result indicates that m-quantization can
successfully improve the training performance of MF models.

C. Group-Based Precision Switching: g-switching

In general, it has been known that the datasets used in
recommender systems have a power-law distribution [32],
[33], which means that a majority of users/items have a small
number of ratings, while a small number of users/items have

100 101 102 103 104 105
100

101

102

103

104

ratings

#
ite

m
s

(a) The distribution of # of items

10 20 30 40

5

4

3

2

1

epochs

G
ra

di
en

t
sc

al
e

(1
0

-4
)

G4

G3

G2

G1

(b) The scale of gradient

Fig. 5: (Observation 2): in the MF model training, the scale
of the gradient for the latent vector of each user (item) differs
since recommender datasets follow the power-law distribution.

a very large number of ratings. (See Figure 5(a)). Meanwhile,
for each rating, only the latent vectors corresponding to the
rating are updated in the MF model training with SGD as
we explained in Section III-A. Therefore, the latent vectors
of a few users/items with a large number ratings are updated
very frequently, while the latent vectors of the majority of
users/items with a small number of ratings are updated infre-
quently. As a result, in the MF model training, the number of
updates for the latent vector of each user/item is not uniform,
varying per the number of ratings that each user/item has.

From this understanding, we posit that in training a MF
model using recommender datasets, the scale of gradient for
the latent vector of each user/item varies, depending on the
number of ratings of each user/item (Observation 2). This is
because the scale of the gradient tends to decrease as the
training progresses [1]. Thus, the scale of the gradient for
the latent vector of a user/item with many ratings decreases
quickly since the latent vector is updated frequently. On the
other hand, the scale of the gradient for the latent vector
of a user/item with a small number of ratings decreases
slowly since the latent vector is updated infrequently. Our
observation is clearly demonstrated in Figure 5(b) where the
X-axis represents the training epochs and the Y-axis represents
the scale of gradients. For instance, G1 is the group with the
top 25% of users with many ratings, while, G4 is the group
with the bottom 25% of users.

By the disparity among the gradient scales of the latent
vectors of users/items, the quantization error of each user/item
is also likely to be different from each other. Most existing
precision switching techniques (e.g., [1], [2]), however, mea-
sure the quantization error for the entire model, and determine
the point of precision switching based on the measured error,
which may cause the following limitations. For users/items
with many ratings, the precision switching is likely to be
applied too late, resulting in the loss of accuracy. While, for
users/items with a few ratings, the precision switching is likely
to be applied unnecessarily quickly, reducing the performance
improvement by the quantization.

To overcome these limitations, we propose a novel group-
based precision switching strategy (g-switching) that groups
users/items having a similar number of ratings into the same
group, measures the quantization error per each group, and
determines the point of precision switching in a group-wise

EpochsEr
ro

r

𝑮𝟐 𝑮𝟑 𝑮𝟒𝑮𝟏

𝑷,𝑸

Latent feature matrix

Grouping

𝑮𝟏 𝑮𝟐 𝑮𝟑 𝑮𝟒

𝑮𝟏
𝑮𝟐
𝑮𝟑
𝑮𝟒

Performance gainFP16 FP32

𝑷, 𝑸

𝑷, 𝑸

of ratings
More Less

Fig. 6: The performance improvement by the g-switching of
MASCOT, compared with the existing precision switching
method, in the MF model training.

manner. Figure 6 illustrates how g-switching improves the
existing precision switching method. In the training with g-
switching, for users/items with many ratings, the precision
switching is applied to their group early since the quantiza-
tion error for the group increases quickly. That is, precision
switching is applied only to the groups that are highly likely
to cause the loss of accuracy (e.g., group G1 in Figure 6).
On the other hand, for users/items with a small number of
ratings, the precision switching is applied to their group late
since the quantization error for the group increases slowly.
That is, groups unlikely to cause the accuracy loss are trained
with quantized precision (i.e., FP16) for a long training period
without precision switching, which helps to further improve
the overall training performance. Consequently, g-switching
can maximize the performance improvement by quantization,
while maintaining low model error simultaneously, by ap-
plying precision switching only to the groups highly likely
to cause the model error. We will empirically verify the
effectiveness of each strategy of MASCOT in Section IV-C.

In MASCOT, therefore, users and items are grouped by
this intuition: users/items in the same group have a similar
number of ratings. Note that we manage the groups for
users and items, respectively, (i.e., g user groups and g item
groups), since the rating distribution of users and items is
different. Thus, users/items within the same group have the
similar quantization error. As the number of groups gets
larger, the quantization error for each group can be estimated
more accurately since users/items with different numbers of
ratings are divided into groups more finely. However, the
overhead required to manage many groups increases as well,
causing performance degradation. As an extreme case, if the
number of groups is the same as that of the users/items,
the precision and quantization error of every user/item has
to be managed individually. Thus, we empirically validate
the training performance and model error of MASCOT with
respect to the number of groups in Section IV-D.

We define the quantization error for the jth user group
GU

j , q-error(GU
j), as the inverse form of the gradient diver-

sity [29].

q-error(GU
j) =

‖
∑

u∈GU
j
∇pu‖22∑

u∈GU
j
‖∇pu‖22

(4)

where ∇pu is the gradient of user u’s latent vector pu. We note
that the quantization error for each item group, q-error(GI

j), is
computed in the same way as that of the user group. Gradient
diversity [29], quantifying the degree to which individual
gradients of loss functions are different from each other, is
able to effectively detect parameters whose values become too
small to be represented by low precision [1]. The quantization
error q-error(Gj) increases as gradients are closer to 0 (i.e.,
more quantization loss).

Finally, we discuss a heuristic method to efficiently estimate
a quantization error. If a quantization error is computed too
frequently and all latent vectors of all users/items in each
group are used for computing an error (e.g., ∀u ∈ GU

j), the
overhead for the computation can be significant, which may
degrade the overall training performance. To address this issue,
MASCOT computes a quantization error every π epochs, and
uses the sampled γ% latent vectors, where π is the interval
of epochs to estimate an error and γ is the sampling ratio
for the error estimation. For example, when π = 5 and
γ = 10, MASCOT estimates a quantization error for each
group based on the latent vectors of users/items corresponding
to the sampled 10% ratings for every 5 epochs. As π gets larger
or γ gets smaller, the overhead for estimating a quantization
error decreases but the quality of an error estimation tends to
degrade too. Thus, we also empirically evaluate the training
performance and model errors of MASCOT with respect to π
and γ in Section IV-D.

D. Algorithm and Implementation Details

In this section, we describe the training process of MAS-
COT and the implementation details. Algorithm 1shows the
whole training process of MASCOT. First, MASCOT divides
the latent vectors of users and items into g groups, respectively,
and then initializes them with half precision (lines 1-2 in
Algorithm 1). Next, for each rating ru,i, the corresponding
latent vectors pu and qi are read and updated (lines 5-
8). As explained in Section III-C, MASCOT estimates the
quantization error for each group based on the sampled ratings.
Thus, MASCOT determines whether to select each rating for
the error estimation with the probability γ%, and the gradients
of the latent vectors corresponding to the selected rating are
stored in the separate groups for samples, SU

j and SI
j (lines 9-

11). At every π epochs, MASCOT computes the quantization
error for each group and determines whether to apply precision
switching to the group (lines 14-19).

Let us describe our implementation details to further op-
timize MASCOT. Given a rating ru,i, in order to read the
corresponding latent vectors pu and qi, it is required to know
its group meta information such as the index of the group
that user u belongs to and its current precision (i.e., FP16
or FP32) since the precision for each group is different from
each other in MASCOT. Every group has the three types of
meta information: (i) the index information is used to identify
whether a user/item belongs to the group; (ii) the precision
information is used to read the latent vector of the user/item

Algorithm 1 Training of MASCOT

Require: R ∈ Rm×n, P ∈ Rm×k, Q ∈ Rn×k, # of groups g,
error estimate period π, sample ratio γ, error threshold θ,
learning rate η

1: R,P,Q← grouping(R,P,Q, g)
2: Initialize P,Q with half precision
3: for t = 1, ..., T do
4: for each rating ru,i do
5: ∇pu ← eu,i · qi − λP · pu
6: ∇qi ← eu,i · pu − λQ · qi
7: pu ← pu + η · ∇pu
8: qi ← qi + η · ∇qi
9: if S ∼ B(γ) then

10: SU
j .push(∇pu), SI

j .push(∇qi)
11: end if
12: update latent matrix(P,Q, pu, qi)
13: end for
14: if t (mod π) == 0 then
15: for j = 1, ...g do
16: εU ← q-error(SU

j), εI ← q-error(SI
j)

17: precision switching(P,Q, εU , εI , θ)
18: end for
19: end if
20: ∀j ∈ {1, ..., g}, SU

j .f lush(·), SI
j .f lush(·)

21: end for
22: Return P,Q

within the group; and (iii) the quantization error information is
used to determine whether g-switching is applied to the group.

To efficiently handle the group meta information, we re-
construct the rating matrix (R) so that users/items belonging
to the same group are sequentially positioned. Note that the
reconstruction does not affect the training result [30], [34].
Thanks to the group-based matrix reconstruction, the group
index information for all users and items can be managed
with a small amount of memory space, since each group can
identify all users/items belonging the group with only a single
value (i.e., the index of the first/last user/item). Thanks to this
optimization, we can reduce the memory space for the group
meta information from O(m+n) to O(g), where m and n are
the number of users and items, respectively, and g is the num-
ber of groups. In our settings, m and n are much larger than
g (e.g., in the case of Yahoo!Musics dataset, m = 1, 000, 990,
n = 624, 961, and g = 100). By taking this advantage, we
store the frequently used group meta information in caches
and registers of the GPU. Specifically, due to the limited
memory space of registers (at most 256KB), we store the
group index information of the most frequently used groups
in registers (at most 62 groups). Also, for efficiently searching
the group to which each user/item belongs, MASCOT searches
groups in the descending order of the number of ratings (i.e.,
the group with a large number of ratings first). MASCOT
with all optimizations improves the naive implementation of
MASCOT by up to 14% (Section IV-C).

IV. EVALUATION

In this section, we evaluate MASCOT by answering the
following four research questions:
• RQ1. Does MASCOT improve the training performance of

MF models more than existing quantization methods?
• RQ2. Does MASCOT provide the errors of MF models

lower than existing quantization methods?
• RQ3. How effective are the strategies and optimizations of

MASCOT in improving the MF model training?
• RQ4. How sensitive are the training performance and model

error of MASCOT to its hyperparameters?

A. Experiments Settings

Datasets and models. We evaluate MASCOT with four
widely used datasets in recommender systems, MovieLens
10M (ML10M), MovieLens 25M (ML25M), Netflix [35], and
Yahoo!Music [36]. Table I shows the statistics of the datasets.
We apply 5-cross validation for the evaluations on the ML10M
and ML25M datasets. For the Netflix and Yahoo!Music, we
just use the provided training and test sets [30], [37]. Netflix
consists of 99M training samples and 1.4M test samples, and
Yahoo!Music consists of 252M training samples and 4M test
samples. For the MF model, we set the dimensionality of latent
space k as 64 and 128 and the regularization parameters λP
and λQ as 0.01 and 0.015 [38].

TABLE I: Detailed statistics of real-world datasets

Datasets # of users # of items # of ratings Sparsity

ML10M 69,878 10,677 10,000,035 98.66%

ML25M 162,541 59,047 24,997,208 99.74%

Netflix 480,189 17,770 100,480,507 98.82%

Yahoo!Musics 1,000,990 624,961 256,804,235 99.96%

System configuration. We use C++ and CUDA to implement
all methods including MASCOT on Ubuntu 18.04 OS. We
run our experiments on a machine with a NVIDIA RTX 2070
GPU and an Intel i9-9900k CPU with 64 GB memory.
Competing Methods. We compare MASCOT1 with three ex-
isting state-of-the-art quantization methods and two baselines.
• Mixed precision training (MPT) [18]: using multiple

(mixed) precisions, low precision (FP16) for computing
operations and single precision for parameter update (FP32).

• MuPPET [1]: using fixed-point and single precisions (e.g.,
INT8, INT12, and FP32) for the computing operations, and
applying precision switching based on the quantization error
for the entire model.

• Adaptive fixed point (AFP) [2]: using fixed-point precisions
(INT8 and INT16) for computing operations, and applying
precision switching based on the quantization error for the
entire model.

• Two baselines (FP32 and FP16): using single (half) preci-
sion for both computing and memory accessing operations.

1The complete code of MASCOT is available at: https://github.com/
Yujaeseo/ICDM-2021 MASCOT

https://github.com/Yujaeseo/ICDM-2021_MASCOT
https://github.com/Yujaeseo/ICDM-2021_MASCOT

ML10M ML25M Netflix Yahoo!Music
0

0.5

1.0

1.5

R
el

at
iv

e
tim

e
MPT MuPPET AFP MASCOT

(a) k = 64

ML10M ML25M Netflix Yahoo!Music
0

0.25
0.5

0.75
1.0

R
el

at
iv

e
tim

e

(b) k = 128

Fig. 7: The performance comparison: The relative time of
1 and 0.5 in the Y-axis represent the baseline performance
(FP32) and the ideal performance (FP16), respectively.

Metrics. The goal of this work is to improve the training
performance of MF models, not to propose a new recommen-
dation model. Thus, we evaluate MASCOT and competing
methods in terms of “errors” in training the MF model
with each method, rather than the recommendation accuracy
(e.g., precision and recall). We use the root mean square
error (RMSE) as the model error metric, which measures the
differences between the predicted values (i.e., predicted rating)
by a model and the original (observed) rating. We also use
the total training time (in seconds) for evaluating the training
performance. For a fair evaluation, we run all experiments five
times and report the average results.
Hyperparameter Settings. We set batch size b as 1 in all
experiments [15], [31], and use Hogwild [39] to fully utilize
the computing power of the GPU. We use SGD optimizer
and set the learning rate η as 0.01 for all training datasets. We
decay the learning rate exponentially with the decay factor 0.1
for 50 epochs [31], [37]. For MuPPET, MPT, and AFP, we set
their hyperparameters as recommended in their work [1], [2],
[18]. For MASCOT, we empirically found the best values for
the error estimate period π, sampling ratio γ, and the number
of groups g, and set π as 2, γ as 5%, and g as 100. The
experimental results about the effects of the hyperparameters
of MASCOT are described in Section IV-D.

B. RQ1 & RQ2: Comparison with Existing Quantizations

In this experiment, we compare MASCOT and three state-
of-the-art quantization methods in terms of the training time
and the model error. We train the MF model on the four
datasets (50 epochs) using all methods, and measure the total
training time and the error (RMSE) of the final model. Figure 7
shows that MASCOT improves the training performance of
MF models most, compared to the training without quantiza-
tion. In addition, the performance improvement of MASCOT
becomes larger as the dimensionality of the latent space of
the MF model increases. In particular, MASCOT provides
about 45% performance improvement on average when the

FP32 MPT MuPPET AFP MASCOT

10 20 30 40 50

0.79

0.80

0.81

0.82

R
M

SE

(a) ML10M

10 20 30 40 50

0.77

0.78

0.79

0.8

(b) ML25M

10 20 30 40 50

0.92

0.93

0.94

R
M

SE

(c) Netflix

10 20 30 40 50

0.9

0.92

0.94

(d) Yahoo!Music

Fig. 8: The error (RMSE) of the MF model (k = 128) trained
by each method with respect to training epochs.

dimensionality of latent space k is 128. This result is surpris-
ing, considering that the theoretically maximum performance
improvement is 50% (FP16). Therefore, these results verify
that m-quantization strategy successfully improves the perfor-
mance of memory access operations in the MF model training,
and g-switching fully exploits the performance improvement
of the quantization by applying precision switching only to
the groups likely to incur larger errors.

On the other hand, all existing quantization methods, origi-
nally proposed to improve the DNN model training, cannot
improve the training performance of the MF model at all
(MPT) or rather degrade the performance (MuPPET and AFP).
This is because they use low precision only in the computing
operations (i.e., forward and backward) and all operations
for memory access are performed with FP32. Especially,
MuPPET [1] shows the significant performance degradation
(59.64% worse on average) compared to the training with
FP32 when the dimensionality of latent space k is 64 (thus,
lower computational cost), which means that the additional
cost for determining fixed-point precision (such as scaling
factor), dominates the performance improvement by the fixed-
point precision in the memory-intensive training.

Figure 8 shows the model error (RMSE) of each method
with respect to training epochs. MASCOT achieves low model
errors, comparable to that of FP32, which indicates that the
g-switching of MASCOT applies the precision switching se-
lectively to the groups that are highly likely to incur significant
model errors during the training. As as result, the above results
demonstrate that MASCOT successfully improves the training
performance of the MF training (almost to the limit), while
maintaining low errors simultaneously.

C. RQ3. Ablation Study

Strategies of MASCOT: In this experiment, we verify the
effectiveness of the m-quantization and g-switching strategies
in terms of the training performance and model error. We
compare three versions of MASCOT: (i) MASCOT-N1 is with
only m-quantization, (ii) MASCOT-N2 is with m-quantization

FP32 MASCOT-N1 MASCOT-N2 MASCOT

0

0.4

0.8

1.2

1.6

Tr
ai

n
tim

e
(s

ec
.)

0.750

0.765

0.780

0.795

0.810

(a) ML10M

0

1

2

3

4

0.730

0.745

0.760

0.775

0.790

R
M

SE

(b) ML25M

0

5

10

15

20

Tr
ai

n
tim

e
(s

ec
.)

0.860

0.885

0.910

0.935

0.960

(c) Netflix

0

20

40

60

80

0.80

0.84

0.88

0.92

0.96

R
M

SE

(d) Yahoo!Music

Fig. 9: Effect of the proposed strategies of MASCOT: m-
quantization and g-switching.

and the existing precision switching method based on quanti-
zation errors for the entire model, and (iii) MASCOT is with
both m-quantization and g-switching strategies. We train the
MF model on all datasets (50 epochs) using three versions of
MASCOT, and measure the total training time (in seconds)
and the error (RMSE) of the final model.

As shown in Figure 9, MASCOT-N1 shows the best im-
provement in reducing training time (in seconds), compared
with FP32. This result demonstrates that m-quantization suc-
cessfully accelerates the training of memory-intensive MF
models. However, the training with m-quantization alone can-
not cope with increasing quantization errors as the training
progresses On the other hand, MASCOT-N2 achieves low
model errors, comparable to that of FP32, but spends more
training time by 34% on average, compared to MASCOT-
N1. In MASCOT-N2, the different quantization errors among
varying groups cannot be addressed simply by estimating
the quantization error based on the entire model. Thus, the
precision switching is applied unnecessarily, degrading the
performance improvement of quantization as we claimed in
Section III-C. Finally, MASCOT provides a performance im-
provement of about 45% on average, compared to FP32, while
achieving comparable model errors. Through this experiment,
we verify that both strategies of MASCOT are quite effective
in the MF model training.
Optimization technique: Next, we evaluate the optimization
technique to efficiently handle the overhead required to read
latent vectors for each input rating (line 4 in Algorithm 1).
We evaluate this optimization in terms of training time since
it does not affect the model error. We compare two versions of
MASCOT. (i) MASCOT-naive is a version of MASCOT with-
out our optimization where all group information is managed
in the GPU device memory, and (ii) MASCOT-opts is with
our optimization technique that manages the frequently used
group information (with many ratings) in caches and registers
of the GPU, and searches the group index table in descending
order of the number of ratings. Specifically, due to the limited
memory space of registers (at most 256KB), we store at most

1 10 20 50 100 200 300 400 500
0

1

2

3

Tr
ai

n
tim

e
(s

ec
.) MASCOT-naive MASCOT-opt

(a) ML25M

1 10 20 50 100 200 300 400 500
0

5

10

15

Tr
ai

n
tim

e
(s

ec
.)

(b) Netflix

Fig. 10: Effect of the optimization technique of MASCOT
with the increasing number of groups.

62 groups’ index information in the register, and the rest in
the caches. We train the MF model using the two versions of
MASCOT while varying the number of groups g from 1 to
500, and measure the total training time.

As clearly shown in Figure 10, MASCOT-opt always
outperforms MASCOT-naive in the training performance,
regardless of the number of groups. The gap tends to grow
as the number of groups increases. This result indicates that
our optimization effectively addresses the increased searching
overhead by the increasing number of groups. Specifically,
when the number of groups g is 100, MASCOT-opt outper-
forms MASCOT-naive by up to 14% on the ML10M (10%
on average). We note that we empirically found the best value
for g, considering both the training performance and model
error. Although the number of groups that we set in this work
is 100, a larger number may be best for the training of more
complicated models or datasets. Therefore, this result is still
promising since the performance improvement of our opti-
mization becomes larger as the number of groups increases.
As a result, our optimization technique effectively handles the
overhead required to access group meta information for each
user/item in MASCOT.

D. RQ4. Hyperparameter Sensitivity

Finally, we evaluate the hyperparameter sensitivity of MAS-
COT, and provide the best values for each hyperparameter,
maximizing the performance improvement while maintaining
low model errors.
Efficient quantization error estimation In this experiment,
we evaluate the effects of hyperparameters π and γ, which
determines the overhead of the quantization error estimation.
We conduct extensive experiments on MASCOT with varying
π and γ (24 combinations in total), where we set the number
of groups as 100. Table II shows the results. As the error
estimate period π gets larger and the sampling ratio γ gets
smaller, the overhead required for estimating the quantization
error for each group decreases, which leads to shorter training
time. While, it is more difficult to accurately estimate the

TABLE II: The training time (sec.) and model error (RMSE) of MASCOT with respect to the hyperparameters π and γ

Sampling ratio (γ%)

1% 5% 10% 20% 50% 100%

Dataset (π) RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s)

ML10M

1 0.7861 0.71 0.7847 0.69 0.7846 0.70 0.7845 0.71 0.7846 0.78 0.7844 0.93
2 0.7858 0.68 0.7853 0.68 0.7850 0.67 0.7846 0.68 0.7846 0.72 0.7845 0.79
4 0.7865 0.66 0.7852 0.67 0.7847 0.67 0.7846 0.67 0.7848 0.68 0.7846 0.73
8 0.7873 0.66 0.7852 0.67 0.7851 0.66 0.7851 0.66 0.7848 0.67 0.7850 0.69

ML25M

1 0.7667 1.91 0.7663 1.19 0.7662 1.98 0.7662 2.15 0.7661 2.62 0.7660 3.47
2 0.7663 1.89 0.7661 1.91 0.7662 1.94 0.7661 2.01 0.7663 2.27 0.7663 2.70
4 0.7669 1.86 0.7667 1.87 0.7666 1.90 0.7662 1.94 0.7665 2.08 0.7663 2.34
8 0.7672 1.84 0.7665 1.86 0.7666 1.87 0.7667 1.89 0.7664 1.96 0.7663 2.13

Netflix

1 0.9169 10.04 0.9153 10.23 0.9153 10.43 0.9151 11.11 0.9150 12.87 0.9150 15.97
2 0.9175 9.94 0.9156 10.06 0.9152 10.23 0.9152 10.54 0.9151 11.56 0.9151 13.18
4 0.9177 9.83 0.9156 10.00 0.9153 10.06 0.9152 10.32 0.9151 10.84 0.9151 11.69
8 0.9188 9.86 0.9161 10.04 0.9155 10.03 0.9154 10.13 0.9153 10.42 0.9153 10.95

Yahoo!Music

1 0.9013 34.08 0.9011 35.18 0.9009 37.04 0.9010 40.05 0.9009 48.89 0.9009 65.92
2 0.9015 33.63 0.9011 35.27 0.9009 36.00 0.9008 37.67 0.9008 42.31 0.9010 51.01
4 0.9018 33.24 0.9010 35.04 0.9007 35.15 0.9007 36.22 0.9007 38.80 0.9005 43.89
8 0.9018 33.25 0.9010 34.13 0.9011 34.45 0.9011 35.04 0.9007 36.62 0.9008 39.68

1 10 20 50 100 200 300 400 500

1.6
1.8
2.0
2.2
2.4

Tr
ai

n
tim

e
(s

ec
.)

0.7600

0.7620

0.7640

0.7660

0.7680
R

M
SE

(a) ML25M

1 10 20 50 100 200 300 400 500

8

10

12

14

Tr
ai

n
tim

e
(s

ec
.)

0.9000

0.9045

0.9090

0.9135

0.9180

R
M

SE

(b) Netflix

Fig. 11: The training time (sec.) and model error (RMSE) of
MASCOT with the increasing number of groups.

quantization error, which may degrade the model accuracy.
Via these extensive experiments, we found a sweet spot,
highlighted in Table II, that significantly improves the training
performance and maintains the model error, comparable to that
of FP32. Based on these results, we set the sampling ratio γ
as 5% and error estimate period π as 2. Also, for the best
values for γ and π, we conducted the t-tests with a 95%
confidence level, and verified that MASCOT with the best
values (γ = 5 and π = 2) outperforms the naive version of
MASCOT (γ = 100 and π = 1) with statistical significance
(i.e., the p-values are below 0.05 in all cases).
The number of groups for users and items As explained in
Section III-C, as the number of groups increases, MASCOT
is able to estimate the quantization error for each group
more accurately by dividing users/items with different ratings
more precisely. On the other hand, the additional overhead of
managing group information increases as well, which leads
to training performance degradation. Thus, in this experiment,

we evaluate the effect of the number of groups on the training
performance and model error of MASCOT. We train the MF
model with varying the number of groups g from 1 to 500,
and measure the total training time and the error (RMSE) of
the trained model. As shown in Figure 11, the training time
tends to decrease as the number of groups increases, but it
starts to increase when the number of groups is around 300.
As the number of groups increases, the quantization error
for each group can be managed more precisely. Thus, the g-
switching can be applied only to the groups that may cause
the significant model error, avoiding unnecessary precision
switching. However, when the number of groups is too large,
the overhead required to search the group meta information
becomes significant, and degrades the training performance.
Meanwhile, the model error of MASCOT is consistent regard-
less of the number of groups, which means that MASCOT is
insensitive to the number of groups. Based on these results,
we set the number of groups g as 100.

V. CONCLUSIONS

In this paper, we observed that the state-of-the-art quantiza-
tion methods are not effective in the training of MF models,
which is quite different from their success in the training
of DNN models. We then identified two distinctive features
that cause the difference: (i) the training of MF models is
much more memory-intensive than that of DNN models, and
(ii) the quantization error for each user/item is quite different
from each other, depending on the number of ratings that the
user/item has. From these two observations, we proposed a
quantization framework for efficient training of MF models,
named MASCOT, in recommender systems. The framework
employs two novel strategies, m-quantization and g-switching,
to successfully address the distinctive features in the training of
MF models. To the best of our knowledge, this is the first quan-
tization framework to accelerate the training of MF models.
Through extensive evaluation with four real-world datasets, we

validated that MASCOT significantly improves the training
performance of MF models by about 45% on average (almost
ideal), compared to the training without quantization, while
maintaining low model errors.

ACKNOWLEDGMENT

The work of Sang-Wook Kim was supported by Samsung
Research Funding & Incubation Center of Samsung Elec-
tronics under Project Number SRFC-IT1901-03. The work of
Dongwon Lee was supported by the NSF award #212114824.

REFERENCES

[1] A. Rajagopal, D. Vink, S. Venieris, and C. S. Bouganis. Multi-precision
policy enforced training (MuPPET): A precision-switching strategy for
quantised fixed-point training of CNNs. In International Conference on
Machine Learning (ICML), pages 7943–7952, 2020.

[2] X. Zhang et al. Fixed-point back-propagation training. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2330–2338, 2020.

[3] P. Resnick, N. Iacovou, M. Suchak, and J. R. P. Bergstorm. GroupLens:
An open architecture for collaborative filtering of netnews. In ACM
Conference on Computer Supported Cooperative Work (CSCW), page
175–186, 1994.

[4] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit
feedback datasets. In IEEE International Conference on Data Mining
(ICDM), pages 263–272, 2008.

[5] D.-K. Chae, J. Kim, D. Chau, and S.-W. Kim. AR-CF: Augmenting
virtual users and items in collaborative filtering for addressing cold-
start problems. In ACM SIGIR International Conference on Research
and Development in Information Retrieval (SIGIR), pages 1251–1260,
2020.

[6] Y.-C. Lee, S.-W. Kim, and D. Lee. gOCCF: Graph-theoretic one-
class collaborative filtering based on uninteresting items. In AAAI
International Conference on Artificial Intelligence (AAAI), pages 3448–
3456, 2018.

[7] Y. Lee, S.-W. Kim, S. Park, and X. Xie. How to impute missing
ratings?: Claims, solution, and its application to collaborative filtering.
In International Conference on World Wide Web (WWW), pages 783–
792, 2018.

[8] J. Lee, W.-S. Hwang, J. Parc, Y. Lee, S.-W. Kim, and D. Lee. l-injection:
Toward effective collaborative filtering using uninteresting items. IEEE
Transactions on Knowledge and Data Engineering, 31(1):3–16, 2019.

[9] S. Zhang, W. Wang, J. Ford, F. Makedon, and J. Pearlman. Using
singular value decomposition approximation for collaborative filtering.
In IEEE Congress on Evolutionary Computation (CEC), pages 257–264,
2005.

[10] X. He, H. Zhang, M. Y. Kan, and T. S. Chua. Fast matrix factorization
for online recommendation with implicit feedback. In ACM SIGIR
International Conference on Research and Development in Information
Retrieval (SIGIR), pages 549–558, 2016.

[11] S. Kang, J. Hwang, W. Kweon, and H. Yu. DE-RRD: A knowledge
distillation framework for recommender system. In ACM International
Conference on Information and Knowledge Management (CIKM), pages
605–614, 2020.

[12] D.-K. Chae, J.-S. Kang, S.-W. Kim, and J.-T. Lee. CFGAN: A generic
collaborative filtering framework based on generative adversarial net-
works. In ACM International Conference on Information and Knowledge
Management (CIKM), pages 137–146, 2018.

[13] X. Wang, Y. Chen, J. Yang, L. Wu, Z. Wu, and X. Xie. A reinforcement
learning framework for explainable recommendation. In IEEE Interna-
tional Conference on Data Mining (ICDM), pages 587–596, 2018.

[14] K.-J. Cho, Y.-C. Lee, K. Han, J. Choi, and S.-W. Kim. No, that’s not my
feedback: TV show recommendation using watchable interval. In IEEE
International Conference on Data Engineering (ICDE), pages 316–327,
2019.

[15] S. Rendle, W. Krichene, L. Zhang, and J. Anderson. Neural collaborative
filtering vs. Matrix factorization revisited. In ACM Conference on
Recommender Systems (RecSys), pages 240–248, 2020.

[16] M. F. Dacrema, S. Boglio, P. Cremonesi, and D. Jannach. A trou-
bling analysis of reproducibility and progress in recommender systems
research. ACM Transactions on Information Systems, 39(2):1–49, 2021.

[17] S. Rendle, L. Zhang, and Y. Koren. On the difficulty of evaluating
baselines: A study on recommender systems. In CoRR abs/1905.01395
(2019). arXiv:1905.01395 http://arxiv.org/abs/1905.01395, 2019.

[18] P. Micikevicius et al. Mixed precision training. In International
Conference on Learning Representations (ICLR), 2018.

[19] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep
learning with limited numerical precision. In International Conference
on Machine Learning (ICML), pages 1737–1746, 2015.

[20] M. Courbariaux, Y. Bengio, and J. P. David. Training deep neural
networks with low precision multiplications. In International Conference
on Learning Representations (ICLR), 2015.

[21] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference with integers
in deep neural networks. In International Conference on Learning
Representations (ICLR), 2018.

[22] D. Das et al. Mixed precision training of convolutional neural networks
using integer operations. In International Conference on Learning
Representations (ICLR), 2018.

[23] R. Banner, I. Hubara, E. Hoffer, and D. Soudry. Scalable methods for
8-bit training of neural networks. In International Conference on Neural
Information Processing Systems (NIPS), pages 5151–5159, 2018.

[24] C. Sakr and N. Shanbhag. Per-tensor fixed-point quantization of the
back-propagation algorithm. In International Conference on Learning
Representations (ICLR), 2019.

[25] F. Zhu et al. Towards unified INT8 training for convolutional neural
network. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1969–1979, 2020.

[26] N. Wang, J. Choi, D. Brand, C. Y. Chen, and K. Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. In
International Conference on Neural Information Processing Systems
(NIPS), pages 7686–7698, 2018.

[27] M. Courbariaux, Y. Bengio, and J. P. David. BinaryConnect: Training
deep neural networks with binary weights during propagations. In
International Conference on Neural Information Processing Systems
(NIPS), pages 3123–3131, 2015.

[28] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.
Binarized neural networks. In International Conference on Neural
Information Processing Systems (NIPS), pages 4114–4122, 2016.

[29] D. Yin, A. Pananjady, M. Lam, D. Papailiopoulos, K. Ramchandran, and
P. Bartlett. Gradient diversity: A key ingredient for scalable distributed
learning. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1998–2007, 2018.

[30] J. Oh, W.-S. Han, H. Yu, and X. Jiang. Fast and robust parallel SGD
matrix factorization. In ACM SIGKDD International Conference on
Knowledge Discovery and Data mining (KDD), pages 865–874, 2015.

[31] X. Xie, W. Tan, L. L. Fong, and Y. Liang. CuMF SGD: Parallelized
stochastic gradient descent for matrix factorization on GPUs. In
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC), pages 79–92, 2017.

[32] H. Steck. Item popularity and recommendation accuracy. In ACM
Conference on Recommender Systems (RecSys), pages 125–132, 2011.

[33] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher. The
connection between popularity bias, calibration, and fairness in recom-
mendation. In ACM Conference on Recommender Systems (RecSys),
pages 726–731, 2020.

[34] Y. Zhuang, W. S. Chin, Y. C. Juan, and C. J. Lin. A fast parallel SGD
for matrix factorization in shared memory systems. In ACM Conference
on Recommender Systems (RecSys), pages 249–256, 2013.

[35] R. M. Bell and Y. Koren. Lessons from the Netflix prize challenge.
ACM SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[36] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo! Music
dataset and KDD-Cup’11. In Proceedings of KDD Cup 2011, pages
3–18, 2012.

[37] H. Yun, H. F. Yu, C. J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon.
NOMAD: Non-locking, stochastic multi-machine algorithm for asyn-
chronous and decentralized matrix completion. Proceedings of the VLDB
Endowment, 7(11):975–986, 2014.

[38] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme.
MyMediaLite: A free recommender system library. In ACM Conference
on Recommender Systems (RecSys), pages 305–308, 2011.

[39] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In International Conference on
Neural Information Processing Systems (NIPS), pages 693–701, 2011.

	Introduction
	Related work
	The Proposed Framework: MASCOT
	Matrix Factorization
	Quantization for Memory Access: m-quantization
	Group-Based Precision Switching: g-switching
	Algorithm and Implementation Details

	Evaluation
	Experiments Settings
	RQ1 & RQ2: Comparison with Existing Quantizations
	RQ3. Ablation Study
	RQ4. Hyperparameter Sensitivity

	Conclusions
	References

