
RealGraphGPU: A High-Performance GPU-Based Graph Engine
toward Large-Scale Real-World Network Analysis

Myung-Hwan Jang
Hanyang University

Seoul, Republic of Korea
sugichiin@hanyang.ac.kr

Yunyong Ko
Hanyang University

Seoul, Republic of Korea
koyunyong@hanyang.ac.kr

Dongkyu Jeong
Hanyang University

Seoul, Republic of Korea
dkjeong91@hanyang.ac.kr

Jeong-Min Park
Hanyang University

Seoul, Republic of Korea
jmpark96@hanyang.ac.kr

Sang-Wook Kim∗

Hanyang University
Seoul, Republic of Korea
wook@hanyang.ac.kr

ABSTRACT
A graph, consisting of vertices and edges, has been widely adopted
for network analysis. Recently, with the increasing size of real-
world networks, many graph engines have been studied to effi-
ciently process large-scale real-world graphs. RealGraph, one of
the state-of-the-art single-machine-based graph engines, efficiently
processes storage-to-memory I/Os by considering unique character-
istics of real-world graphs. Via an in-depth analysis of RealGraph,
however, we found that there is still a chance for more performance
improvement in the computation part of RealGraph despite its
great I/O processing ability. Motivated by this, in this paper, we
propose RealGraphGPU, a GPU-based single-machine graph engine.
We design the core components required for GPU-based graph pro-
cessing and incorporate them into the architecture of RealGraph.
Further, we propose two optimizations that successfully address the
technical issues that could cause the performance degradation in
the GPU-based graph engine: buffer pre-checking and edge-based
workload allocation strategies. Through extensive evaluation with
6 real-world datasets, we demonstrate that (1) RealGraphGPU im-
proves RealGraph by up to 546%, (2) RealGraphGPU outperforms
existing state-of-the-art graph engines dramatically, and (3) the
optimizations are all effective in large-scale graph processing.

CCS CONCEPTS
• Information systems→ Data management systems.

KEYWORDS
graph engine; large-scale graphs processing; single machine
ACM Reference Format:
Myung-Hwan Jang, Yunyong Ko, Dongkyu Jeong, Jeong-Min Park, and Sang-
Wook Kim. 2022. RealGraphGPU: A High-Performance GPU-Based Graph
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557679

Engine toward Large-Scale Real-World Network Analysis. In Proceedings
of the 31st ACM International Conference on Information and Knowledge
Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3511808.3557679

1 INTRODUCTION
In real-world networks, there are many types of objects, which
have complex relationships with each other [30, 32]. By analyzing
such a network, we can obtain useful information and knowledge
to leverage them in various downstream tasks such as community
detection, link prediction, and recommendation [7, 10, 22, 28]. Re-
cently, with the increasing size of real-world networks (e.g., social
networks), graph engines for efficiently analyzing large-scale real-
world networks have been widely studied [6, 8, 15, 18, 19, 29, 33, 35].
In single-machine-based graph engines [6, 8, 15, 33, 35], they store an
entire graph exceeding the main memory (MM) capacity in external
storage (e.g., HDD and SSD) and load parts of the graph (i.e., vertices
and their related edges) into MM only when they are required for
processing. In this way, they successfully process large-scale graphs
on a single machine, while showing great performance comparable
to or even better than distributed-system-based graph engines, with
limited computing resources. Although the single-machine-based
approach is not able to process extremely large graphs exceeding
the capacity of external storage, it is very useful in practice because
not only most real-world graphs fit in external storage but also it
does not require expensive infrastructure.

The authors of RealGraph [8], the state-of-the-art single-machine-
based graph engine, identified the unique characteristics of real-
world graphs, and proposed a novel 4-layer architecture and op-
timizations to reflect those characteristics. Thanks to its inherent
architecture and optimizations, RealGraph efficiently addresses
storage-to-MM I/Os, the main challenge of single-machine-based
graph engines, thereby improving significantly the graph process-
ing performance compared to existing graph engines [6, 15, 24, 33,
35]. For an in-depth analysis, we performed four popular graph
algorithms having different patterns on Twitter and Yahoo datasets
with RealGraph and measured the computation and I/O overheads.
Figure 1 shows the ratio of computation and I/O overheads of Re-
alGraph. Clearly, the I/O overhead is always much lower than the
computation overhead across all graph algorithms. This indicates
that RealGraph successfully handles storage-to-MM I/Os occurred
inevitably by a limited memory size on a single machine.

https://orcid.org/0000-0003-4419-5148
https://orcid.org/0000-0003-1283-4697
https://orcid.org/0000-0002-3842-3514
https://orcid.org/0000-0001-9389-6501
https://orcid.org/0000-0002-6345-9084
https://doi.org/10.1145/3511808.3557679
https://doi.org/10.1145/3511808.3557679

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA M. H. Jang et al.

BFS PR RWR WCC
0
20
40
60
80
100

Ra
tio

(%
)

(a) Twitter
BFS PR RWR WCC

0
20
40
60
80
100

(b) Yahoo
Figure 1: The ratio of computation (red) and I/O (blue) over-
heads of RealGraph [8] on two real-world datasets.

Under this circumstance, in this work, we aim to further improve
the performance of RealGraph. To this end, we look into common
characteristics of graph algorithms closely. Most graph algorithms
consist of repeated independent operations for vertices and edges [12,
25, 26]. In the case of PageRank [21], each vertex sends its PageRank
score to its out-neighbors and aggregates the scores received from
its in-neighbors at every iteration. Here, the operation for each
vertex is independent of those for other vertices. This naturally
indicates that the operations of graph algorithms can be parallelized.
Meanwhile, a GPU is a computational accelerator composed of
hundreds/thousands of cores specially designed for fast parallel
computing [11, 20, 27]. Thus, a GPU is a much more-suitable device
than a CPU in processing large-scale graphs due to its strong parallel
computing power. Since RealGraph is a CPU-based engine, despite
its great I/O capability, there is still a chance for more improvement
in the computation part (as shown in Figure 1).

Thismotivates us to proposeRealGraphGPU, a GPU-based single-
machine graph engine. To this end, we design new components re-
quired for efficient GPU-based graph processing, incorporate them
into the architecture of RealGraph, and construct a novel 5-layer
architecture (Section 3.1). Based on the architecture, RealGraphGPU
loads only the necessary parts of a graph into the GPU device mem-
ory (DM) and processes them in parallel by a number of GPU cores.
Further, we identify technical issues that can cause significant per-
formance degradation in GPU-based graph processing and propose
two novel optimization strategies for addressing them effectively:
(1) the buffer pre-checking to reduce the amount of unnecessary
I/Os, and (2) the edge-based workload allocation to distribute work-
loads to GPU threads evenly. As a result, RealGraphGPU can process
large-scale graphs very efficiently by leveraging strong parallel-
computing power of a GPU, while maintaining the efficient I/O
processing power which is the original strength of RealGraph.

We validate the superiority of our RealGraphGPU in comparison
with six state-of-the-art graph engines, includingRealGraph, by per-
forming extensive experiments with four popular graph algorithms
on six real-world graphs. The experimental results demonstrate
that (1) RealGraphGPU improves the performance of RealGraph
significantly by up to 546%; (2) RealGraphGPU outperforms all the
state-of-the-art graph engines dramatically by up to 70 times; (3)
our optimization strategies employed in RealGraphGPU are all ben-
eficial to large-scale graph processing.
2 RELATEDWORKS
Single-machine-based approach. Single-machine-based graph
engines [3, 6, 8, 15, 24, 35] focus on efficiently handling storage-to-
MM I/Os, the main challenge of the single-machine-based approach.
GraphChi [15] and X-Stream [24] improve the I/O processing per-
formance by exploiting the sequential access to data in storage,
rather than random access. TurboGraph [6], GridGraph [35], and
FlashGraph [33] aim to reduce unnecessary storage-to-MM I/Os

GPU-Buffer Table

…

CPU Buffer

1 2 3 41 2 3 4 5 6 7 8

CPU/Main memory GPU/Device memory

GPU Buffer

Output

Object
Mgmt. Layer

Input

Storage
Mgmt. Layer

CPU Thread Mgmt. Layer GPU Thread Mgmt. Layer

Object

Block

Edge

Buffer
Mgmt. Layer

CPU-Buffer Table

Storage

CPU

Attribute

Indicator

Attribute

Indicator

Attribute

Indicator

Object Index Table

GPU

Attribute

Indicator

Figure 2: Architecture of RealGraphGPU.

and utilize the parallel I/O processing ability of SSD. RealGraph [8],
the state-of-the-art graph engine, analyzes the characteristics of
real-world graphs and the operation patterns of graph algorithms,
thereby achieving high performance in storage-to-MM I/Os.
Distributed-system-based approach.Many distributed-system-
based graph engines have been widely studied as well [2, 18, 19,
23, 29, 34]. The graph engines belonging to this approach split and
distribute the entire graph over multiple nodes in a distributed
system, and process them in parallel. In this way, this approach
is able to process extremely large graphs that the single-machine-
based approach fails to process. However, the distributed-system-
based approach requires not only inter-node communication, which
is very time-consuming, but also costly infrastructure to support
the inter-node communication [1, 5, 13, 17, 34].
Relation to our work. Most existing graph engines focus mainly
on improving the performance of I/O processing, while little atten-
tion has been paid to improving the computation performance. Our
work aims at improving the computation performance in graph
processing by leveraging the strong parallel computing power of
a GPU on a single machine, while maintaining the efficient I/O
processing power of the original RealGraph.

3 PROPOSED METHOD: REALGRAPHGPU

3.1 Architecture and Algorithm
3.1.1 Architecture. RealGraph [8] proposes a novel 4-layer archi-
tecture (i.e., storage, buffer, object, and CPU thread management
layers), where each layer closely interacts with the other layers
to process storage-to-MM I/Os efficiently. Toward extending Real-
Graph to a GPU-based graph engine, in this work, we (1) design a
new layer (GPU thread management layer) to manage GPU threads
and device memory (DM), and (2) refine the original buffer and CPU
thread management layer to support efficient GPU-based graph
processing. Figure 2 illustrates the 5-layer architecture and the pro-
cessing flow of RealGraphGPU. The description of each layer is as
follows.
• Storagemanagement layer:This layermanages the data stored
in storage, where data is stored in fixed-size blocks and processed
in a block-based manner. Each block includes multiple objects,
each of which stores a vertex and its related edges.
• Buffermanagement layer: This layer is in charge of the blocks
that are loaded in the CPU and GPU buffers (i.e., the blocks in

RealGraphGPU : A High-Performance GPU-Based Graph Engine toward Large-Scale Real-World Network Analysis CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

MMandDM). It manages the CPU and GPU buffers for physically
storing blocks in MM and DM, and the CPU/GPU-buffer tables
for indexing the loaded blocks.
• Objectmanagement layer:This layermanages the information
about which objects are included in each block. In the object
index table, the 𝑖𝑡ℎ column represents the indices of the objects in
the 𝑖𝑡ℎ block, where each object is indexedwith its corresponding
vertex ID. To reduce the main memory consumption, we only
store the first and last objects’ indices (i.e., the two vertex IDs)
after sorting the objects in ascending order.
• CPU thread management layer: This layer manages CPU
threads and attribute/indicator vectors in MM. CPU threads are
in charge of the MM-to-DM data transfer (i.e., sending/receiving
the data to/from GPU DM). The attribute vectors store the result
(e.g., PageRank scores) from the current/next iterations and the
indicator vectors store the information about which vertices to
be processed in the current/next iteration.
• GPU thread management layer: This layer manages GPU
threads and attribute/indicator vectors in DM. GPU threads per-
form the actual operations of a graph algorithm (e.g., PageRank)
based on the attribute/indicator vectors. The attribute/indicator
vectors play the same roles as in the CPU management layer.
After the operations are completed, the results are transferred
back to the CPU thread management layer.

3.1.2 Algorithm. Since the GPU DM is limited, RealGraphGPU
loads only necessary parts of a graph into DM and processes them
in parallel by using GPU threads, based on the 5-layer architecture.
Algorithm 1 shows the entire process of RealGraphGPU, where 𝐵𝑖
indicates the 𝑖𝑡ℎ block in the external storage, 𝑇obj does the object
index table, 𝑇cpu/𝑇gpu do the CPU/GPU-buffer tables, 𝑓 (·) does the
function of a given graph algorithm, and 𝑎in/out and 𝑑cnt/next do
the attribute and indicator vectors, respectively. At each iteration,
RealGraphGPU loads the block (𝐵𝑖) having the vertices and their
related edges to be processed into the GPU buffer and runs the op-
erations of a given graph algorithm (𝑓 (·)) (lines 3-7 in Algorithm 1).

Algorithm 1 Graph processing of RealGraphGPU

1: Function RealGraphGPU(𝐵,𝑇obj, 𝑓):
2: 𝑎in, 𝑎out, 𝑑cnt, 𝑑next ← 0, 𝑇cpu,𝑇gpu ← ∅
3: for 𝑡 = 0, 1, . . . do
4: 𝐵𝑖 ← get_next_block(𝐵,𝑇obj,𝑇gpu,𝑇cpu, 𝑑cnt)
5: 𝑎out, 𝑑next ← 𝑓 (𝐵𝑖 , 𝑎in, 𝑑cnt) # run a graph operation
6: 𝑎in ← 𝑎out, 𝑑cnt ← 𝑑next
7: end for
8: return 𝑎out

9: Function get_next_block(𝐵,𝑇obj,𝑇gpu,𝑇cpu, 𝑑cnt):
10: 𝑖 ← get_object_index(𝑇obj, 𝑑cnt)
11: if 𝐵𝑖 ∉ 𝑇gpu then # buffer pre-checking
12: if 𝐵𝑖 ∉ 𝑇cpu then # Storage-to-MM-to-DM
13: 𝑇gpu ← {𝐵𝑖 } ∪𝑇gpu,𝑇cpu ← {𝐵𝑖 } ∪𝑇cpu
14: else # MM-to-DM
15: 𝑇gpu ← {𝐵𝑖 } ∪𝑇gpu
16: end if
17: end if
18: return 𝐵𝑖

101 102 103
101
103
105
107

of vertices

D
eg
re
e

10 20 30
0

200
400
600

Vertex ID
Figure 3: The power-low degree distribution (left) and the
different degrees across vertices and blocks (right).

3.2 Performance Optimizations
3.2.1 Buffer pre-checking. The operations of a graph algorithm are
repeated for vertices (or edges). In general, the vertex processed in
the previous iteration and its neighbors tend to be processed again
in the next iteration [9]. If a graph engine does not take into account
which vertices and edges were processed in the previous iteration,
it tries to transfer the data to the GPU buffer at every iteration
because it is unaware of which vertices and edges are currently
in the GPU buffer. That is, even though the vertices needed in the
current iteration are already loaded in the CPU/GPU buffers, the
block storing these vertices should be transferred unnecessarily,
which may cause serious performance degradation.

To address this issue, we define the CPU/GPU-buffer tables man-
aging the indices of the blocks loaded in the CPU/GPU buffer, and
propose a simple yet effective strategy to reduce the unnecessary
MM-to-DM and storage-to-MM I/Os (buffer pre-checking). Func-
tion get_next_block(·) in Algorithm 1 describes the block loading
process of RealGraphGPU with the buffer pre-checking strategy.
RealGraphGPU checks the GPU/CPU-buffer tables at the begin-
ning of each iteration, for deciding whether to request data to the
CPU thread/storage management layers (lines 11-17). Additionally,
we implement the MM-to-DM data transfer using asynchronous
streams supported by the GPU [4], thereby hiding the overhead of
the MM-to-DM data transfer under the GPU processing overhead.
3.2.2 Edge-based workload allocation. In general, real-world graphs
tend to follow a power-law degree distribution, which means that a
majority of vertices have a small number of edgeswhile a small num-
ber of vertices have a huge number of edges [14, 16]. Figure 3 clearly
shows that a real-world graph follows the power-law degree distri-
bution (left) and the degrees of vertices are quite different across
blocks (right). This implies that the amount of required operations is
also quite different across vertices in real-world graphs. The vertex-
based workload allocation that many graph engines [6, 15, 24, 33]
have adopted, however, distributes workloads into multiple threads
in a vertex-based manner, without taking into account this unique
characteristic of real-world graphs. As a result, a few threads in
charge of the vertices with a huge number of edges could be over-
loaded, thus degrading the entire performance significantly for
large-scale real-world graph processing.

From this observation, we propose an edge-based workload
allocation strategy that aims to distribute the workloads into GPU
threads evenly. RealGraphGPU with the edge-based workload allo-
cation distributes workloads into GPU threads in an edge-based
manner (rather than the vertex-based one) and run the same graph
operation on multiple GPU threads in parallel (line 5). Through our
edge-based workload allocation, RealGraphGPU is able to balance
well the workloads over GPU threads regardless of the vertices
having a large number of edges. Note that the edge-based strategy
is always superior to the vertex-based one in balancing workloads

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA M. H. Jang et al.

RealGraphGPU RealGraph

Wiki UK Twit SK Friend Yahoo
0

10

20

1
4 4

7 8 7
2

6 6
9

14 14

Ru
n
tim

e
(s
ec
.)

(a) BFS
Wiki UK Twit SK Friend Yahoo

0

100

200

2 4 16 10 41
112

11 16
73

30

184 211

(b) PR
Wiki UK Twit SK Friend Yahoo

0

50

100

1 3 6 8 10
44

5 13 23 30
59

109

(c) WCC
Wiki UK Twit SK Friend Yahoo

0

100

200

2 4 16 10 42
119

11 17
73

30

187 214

(d) RWR
Figure 4: Comparison of RealGraph and RealGraphGPU in the graph processing performance for various graph algorithms.

across GPU threads, except for the extreme case where all vertices
have the exactly same number of edges. We empirically verify the
effectiveness of the above two optimization strategies in Section 4.
4 EVALUATION
In this section, we evaluate RealGraphGPU with real-world datasets
by answering the following evaluation questions (EQs):
• EQ1: How much does RealGraphGPU improve RealGraph in
terms of the performance of graph processing?
• EQ2: Does RealGraphGPU provide the performance better than
the existing state-of-the-art graph engines?
• EQ3: Are the optimization strategies effective in improving the
performance of RealGraphGPU?

Experimental setup.We run our experiments on a single machine
equipped with an Intel i7-8700K CPU with 128GB main memory
(MM), 250GB M.2 NVMe SSD, and Titan XP GPU with 12GB device
memory (DM) using PCIe Gen3 interface. We set the number of
CPU threads and GPU streams as 8 and 32, respectively, and limit
MM and DM as 16GB and 8GB respectively, to rigorously evalu-
ate RealGraphGPU in a limited MM and DM environment. We set
the size of each block to 1MB, same as [8]. We use six real-world
datasets [8] (Table 1) and four popular graph algorithms – breadth-
first search (BFS) [25], PageRank (PR) [21], weakly connected com-
ponent (WCC) [26], and random walk and restart (RWR) [31].

Table 1: Statistics of real-world datasets.
Datasets Wiki UK Twitter SK Friend Yahoo

of Nodes 12M 39M 61M 50M 68M 1,4B
of Edges 370M 930M 1.4B 1.9B 2.5B 6.6B

Size 5.7GB 16GB 24GB 32GB 44GB 114GB

EQs1-2. Performance of RealGraphGPU. In this experiment, we
compare RealGraphGPU with RealGraph [8] and five existing graph
engines – GraphChi [15], X-Stream [24], TurboGraph [6], Grid-
Graph [35], and FlashGraph [33]. We run the four graph algorithms
on six real-world graphs by using each graph engine, and measure
the running time. First, Figure 4 shows that RealGraphGPU always
outperforms RealGraph across all graph algorithms and all datasets
(especially, by up to 546% gain). This result verifies that the pro-
posed architecture and optimization strategies of RealGraphGPU
are quite effective in extending RealGraph toward a GPU-based
graph engine. Second, Figure 5 shows that RealGraphGPU provides
the performance much better than the existing graph engines (by up
to ×69 better than TurboGraph), where "O.O.M" and "O.O.T" denote
the out-of-memory and out-of-time indicating the case exceeding 24
hours, respectively. Thus, RealGraphGPU efficiently processes even
the huge graphs that existing graph engines fail to process. As a re-
sult, we validate that our RealGraphGPU successfully leverages the
strong parallel-computing power of a GPU, while maintaining the
efficient I/O processing power, the original strength of RealGraph.

RealGraphGPU TurboGraph GridGraph
FlashGraph GraphChi X-Stream

BFS WCC
100
101
102
103

20 4079
266439 291

27
87

451 458979 1,460

Ru
n
tim

e
(s
ec
.)

(a) Friend BFS WCC
100
101
102
103
104

12
129

843 441

12,415 14,078

122

(b) Yahoo

O
.O
.T

O
.O
.T

O
.O
.M

O
.O
.T

O
.O
.T

Figure 5: Comparison with existing graph engines.
EQ3. Ablation study. In this experiment, we verify the effects of
our optimization strategies.We compare the following four versions
of RealGraphGPU: (1) RG-no is the version without any optimiza-
tions; (2) RG-Bcheck is the one with the buffer pre-checking; (3)
RG-Ealloc is the one with the edge-based workload allocation; (4)
RG-All is the one with all of the two strategies. We run BFS and
WCC by using each of the four versions and measure the running
time. Figure 6 shows the results, where the relative time of 1 in
the 𝑌 -axis represents the baseline performance (RG-no). The re-
sults show that each of the proposed strategies improves the naive
version of RealGraphGPU (RG-no) and RG-All provides the best
performance in all cases (by up to 960% compared to RG-no). This
implies that both of the proposed strategies are effective in address-
ing the technical issues that we explained in Section 3.2.

RG-no RG-Bcheck RG-Ealloc RG-All

BFS WCC
0

0.5

1.0

(a) Friend

Re
la
tiv

e
tim

e

BFS WCC
0

0.5

1.0

(b) Yahoo
Figure 6: Effects of the proposed optimization strategies.

5 CONCLUSIONS
In this paper, we proposed a novel GPU-based single-machine graph
engine, RealGraphGPU, to process large-scale real-world graphs ef-
ficiently. Also, we identified two technical issues that could cause
significant performance degradation and proposed novel optimiza-
tion strategies for addressing them: the buffer pre-checking and
the edge-based workload allocation. Via comprehensive evaluation
with six real-world datasets, we showed that RealGraphGPU out-
performs RealGraph and existing state-of-the-art graph engines
dramatically, and all of our optimization strategies are quite effec-
tive in improving the performance of large-scale graph processing.
6 ACKNOWLEDGMENTS
This work was supported by the Institute of Information & commu-
nications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.RS-2022-00155586 and No.2022-
0-00352). Also, this is the result of the joint work with Samsung
Electronics Co., Ltd.

RealGraphGPU : A High-Performance GPU-Based Graph Engine toward Large-Scale Real-World Network Analysis CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

REFERENCES
[1] Aydin Buluç and John R Gilbert. 2012. Parallel Sparse Matrix-Matrix Multiplica-

tion and Indexing: Implementation and Experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[2] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen.
2019. Powerlyra: Differentiated Graph Computation and Partitioning on Skewed
Graphs. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019), 1–39.

[3] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.
2016. Nxgraph: An Efficient Graph Processing System on a Single Machine. In
Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering
(ICDE). IEEE, 409–420.

[4] NVIDIA Corporation. 2022. CUDA Stream. https://developer.download.nvidia.
com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

[5] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-
Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In Pro-
ceedings of the 39th ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI). ACM SIGPLAN, 752–768.

[6] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo
Kim, Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A Fast Parallel Graph
Engine Handling Billion-Scale Graphs in a Single PC. In Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining (KDD). ACM,
77–85.

[7] Min-Hee Jang, Christos Faloutsos, Sang-Wook Kim, U Kang, and Jiwoon Ha. 2016.
Pin-trust: Fast Trust Propagation Exploiting Positive, Implicit, and Negative
Information. In Proceedings of the ACM International Conference on Information
and Knowledge Management (CIKM). ACM, 629–638.

[8] Yong-Yeon Jo, Myung-Hwan Jang, Sang-Wook Kim, and Sunju Park. 2019. Real-
Graph: A Graph Engine Leveraging The Power-Law Distribution of Real-World
Graphs. In Proceedings of the 2019 World Wide Web Conference (WWW). ACM,
807–817.

[9] Yong-Yeon Jo, Myung-Hwan Jang, Sang-Wook Kim, and Sunju Park. 2021. A
Data Layout with Good Data Locality for Single-Machine based Graph Engines.
IEEE Trans. Comput. 14, 8 (2021), 1–10.

[10] Yoonsuk Kang, Jun-Seok Lee, Won-Yong Shin, and Sang-Wook Kim. 2022. Com-
munity Reinforcement: An Effective and Efficient Preprocessing Method For
Accurate Community Detection. Knowledge-Based Systems 237 (2022), 107741.

[11] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:
Vertex-Centric Graph Processing on GPUs. In Proceedings of the 23rd IEEE In-
ternational Symposium on High-performance Parallel and Distributed Computing
(HPDC). IEEE, 239–252.

[12] Jon M Kleinberg. 1999. Authoritative Sources in a Hyperlinked Environment. J.
ACM 46, 5 (1999), 604–632.

[13] Yunyong Ko, Kibong Choi, Jiwon Seo, and Sang-Wook Kim. 2021. An In-Depth
Analysis of Distributed Training of Deep Neural Networks. In Proceedings of the
2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 994–1003.

[14] Yunyong Ko, Jae-Seo Yu, Hong-Kyun Bae, Yongjun Park, Dongwon Lee, and
Sang-Wook Kim. 2021. MASCOT: A Quantization Framework for Efficient Ma-
trix Factorization in Recommender Systems. In Proceedings of the 2021 IEEE
International Conference on Data Mining (ICDM). IEEE, 290–299.

[15] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI). USENIX, 31–46.

[16] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Den-
sification and Shrinking Diameters. ACM Transactions on Knowledge Discovery
from Data 1, 1 (2007), 1–41.

[17] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous Decen-
tralized Parallel Stochastic Gradient Descent. In Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 3043–3052.

[18] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and JosephMHellerstein. 2012. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. Proceedings of the VLDB Endowment 5,
8 (2012), 716–727.

[19] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
Scale Graph Processing. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD). ACM, 135–146.

[20] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-Performance
and Memory-Saving Sparse General Matrix-Matrix Multiplication for Nvidia
Pascal GPU. In Proceedings of the 2017 46th IEEE International Conference on
Parallel Processing (ICPP). IEEE, 101–110.

[21] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford
InfoLab.

[22] Masoud Rehyani Hamedani and Sang-Wook Kim. 2021. AdaSim: A Recursive Sim-
ilarity Measure in Graphs. In Proceedings of the 30th ACM International Conference
on Information and Knowledge Management (CIKM). ACM, 1528–1537.

[23] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel.
2015. Chaos: Scale-out Graph Processing from Secondary Storage. In Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP). ACM, 410–424.

[24] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
Centric Graph Processing Using Streaming Partitions. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP). ACM, 472–488.

[25] Robert Sedgewick and Kevin Wayne. 2011. Algorithms. Addison-Wesley Profes-
sional.

[26] Kenji Suzuki, Isao Horiba, and Noboru Sugie. 2003. Linear-Time Connected-
Component Labeling Based on Sequential Local Operations. Computer Vision
and Image Understanding 89, 1 (2003), 1–23.

[27] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. 2019. SEP-Graph: Finding Shortest Execution Paths for Graph Processing
under a Hybrid Framework on GPU. In Proceedings of the 24th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP). ACM
SIGPLAN, 38–52.

[28] Hao Wang, Yan Yang, and Bing Liu. 2019. GMC: Graph-based Multi-view Cluster-
ing. IEEE Transactions on Knowledge and Data Engineering 32, 6 (2019), 1116–1129.

[29] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
GraphX: A Resilient Distributed Graph System on Spark. In Proceedings of the
International Workshop on Graph Data Management Experiences and Systems
(GRADE). ACM, 1–6.

[30] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph Indexing: A Frequent
Structure-Based Approach. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data (SIGMOD). ACM, 335–346.

[31] Hilmi Yildirim and Mukkai S Krishnamoorthy. 2008. A Random Walk Method
for Alleviating the Sparsity Problem in Collaborative Filtering. In Proceedings of
the 2008 ACM Conference on Recommender Systems (RecSys). ACM, 131–138.

[32] Peixiang Zhao and Jiawei Han. 2010. On Graph Query Optimization in Large
Networks. Proceedings of the VLDB Endowment 3, 1-2 (2010), 340–351.

[33] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and
Alexander S Szalay. 2015. FlashGraph: Processing Billion-Node Graphs on an
Array of Commodity SSDs. In Proceedings of the USENIX Conference on File and
Storage Technologies (FAST). USENIX, 45–58.

[34] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini:
A {Computation-Centric} Distributed Graph Processing System. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). USENIX, 301–316.

[35] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.
In Proceedings of the 2015 USENIX Annual Technical Conference (ATC). USENIX,
375–386.

https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf

	Abstract
	1 Introduction
	2 Related works
	3 Proposed Method: RealGraphGPU
	3.1 Architecture and Algorithm
	3.2 Performance Optimizations

	4 Evaluation
	5 Conclusions
	6 Acknowledgments
	References

