

ALADDIN: Asymmetric Centralized Training for Distributed Deep Learning

Yunyong Ko¹, Kibong Choi¹, Hyunseung Jei², Dongwon Lee³, and Sang–Wook Kim¹ Hanyang University, Republic of Korea¹ SK Telecom, Republic of Korea² The Pennsylvania State University, PA, USA³

Table of Contents

SK SK

Background

- Distributed deep learning
- Centralized and decentralized training

Proposed algorithm: ALADDIN

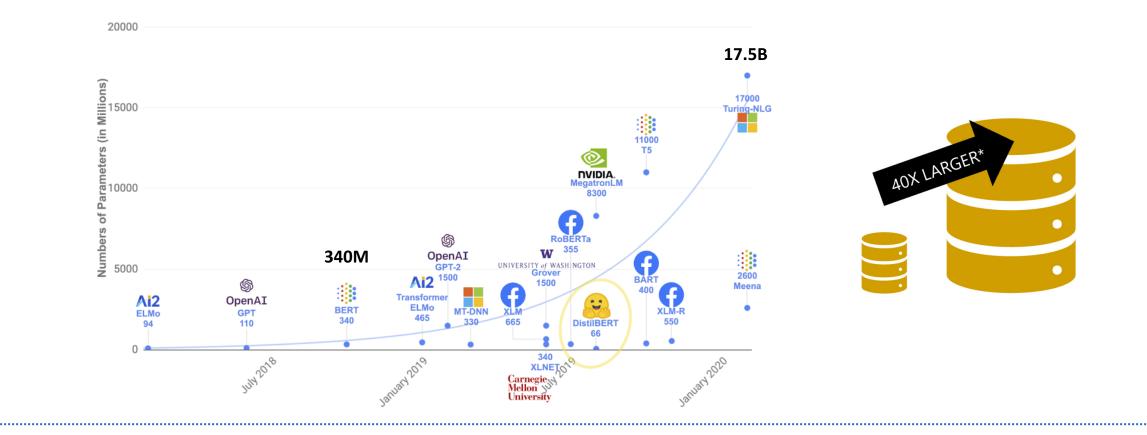
- Motivation and key idea
- Algorithm details
- Convergence analysis
- **Experiments**

Challenge of Deep Learning

□ Training of DNNs *requires massive time*

The increasing sizes of DNN models and training datasets

- 1) Increasing computation overhead (forward, backward, and update)
- 2) Increasing the number of training iterations



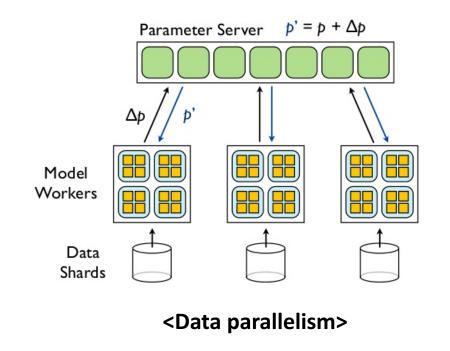
Distributed Deep Learning

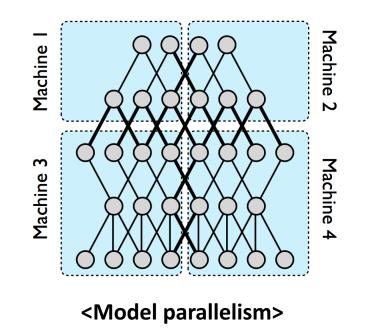
Data parallelism (our focus)

Splitting and distributing *training data* into multiple workers

Model parallelism

Splitting and distributing *a model* into multiple workers

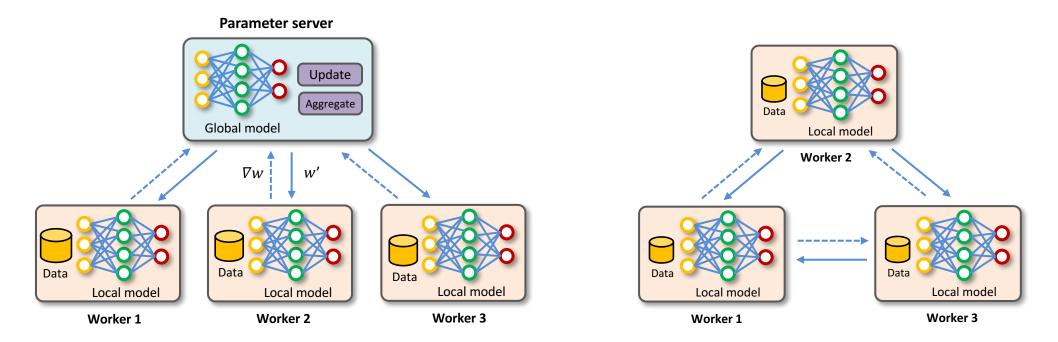




Data Parallelism Approach

Splitting and distributing *training data* into multiple workers

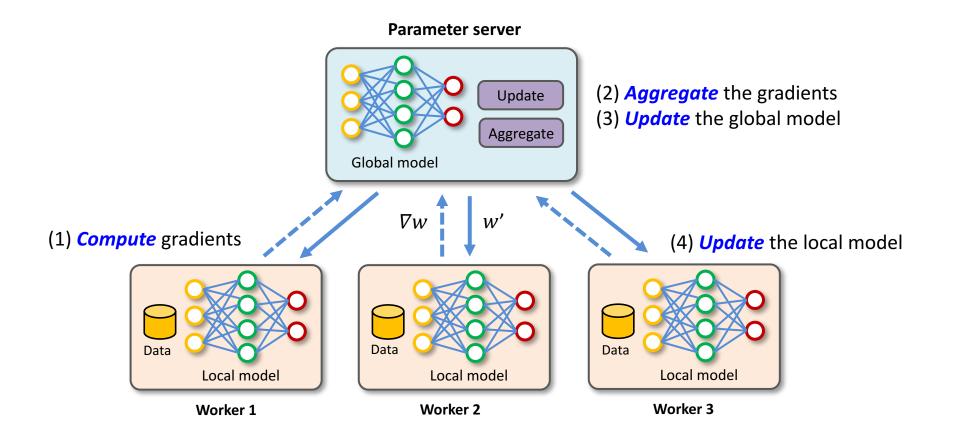
- Each worker trains a model based on its local data *in parallel*
- Then, the training results are aggregated via communication



Centralized training

Decentralized training

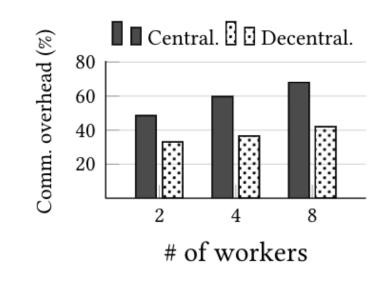
The parameter server (PS), managing the global model, aggregates the training results from workers,



Deficiency of Centralized Training

Large communication overhead

- The PS can be a bottleneck of the whole training
- More than 60% of the entire training (# of workers >= 4)

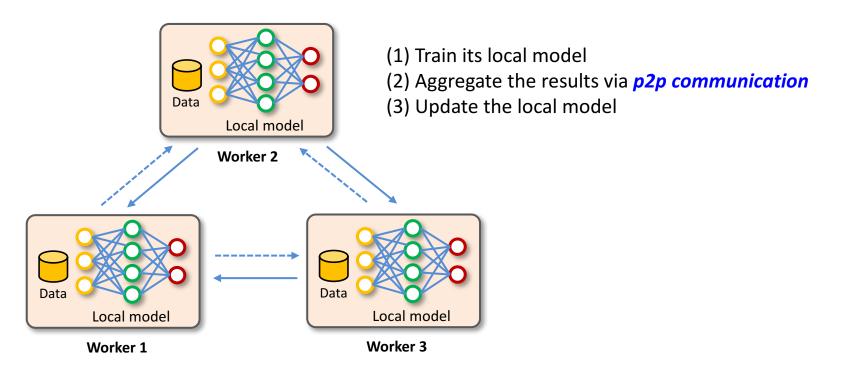


<Communication overhead w.r.t the number of workers> (VGG-16 training)

.

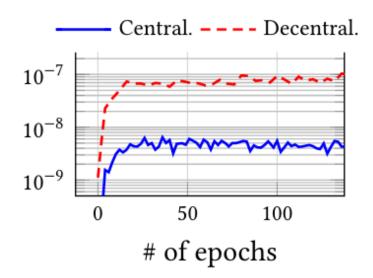
The training results of workers are aggregated via *peer-to-peer communication*

To avoid the problem of *PS being bottleneck*



High parameter variance

To sufficiently aggregate workers' results via p2p communication is difficult



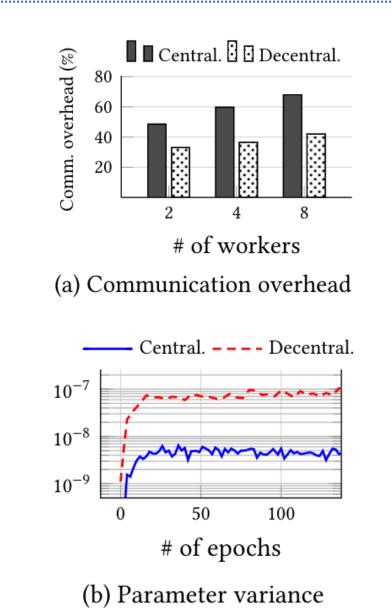
<Parameter variance as the training progress>

Summary of Centralized and Decentralized Training

- Large communication overhead
- Low parameter variance among workers

Decentralized training

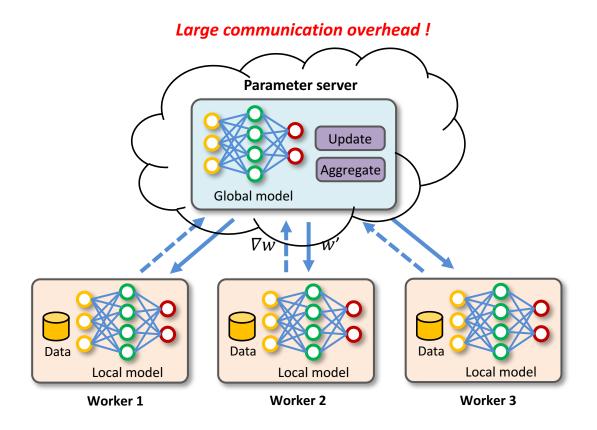
- Small communication overhead
- High parameter variance among workers



Our Research Direction

□ To improve the performance of centralized training

By addressing the problem of large communication overhead

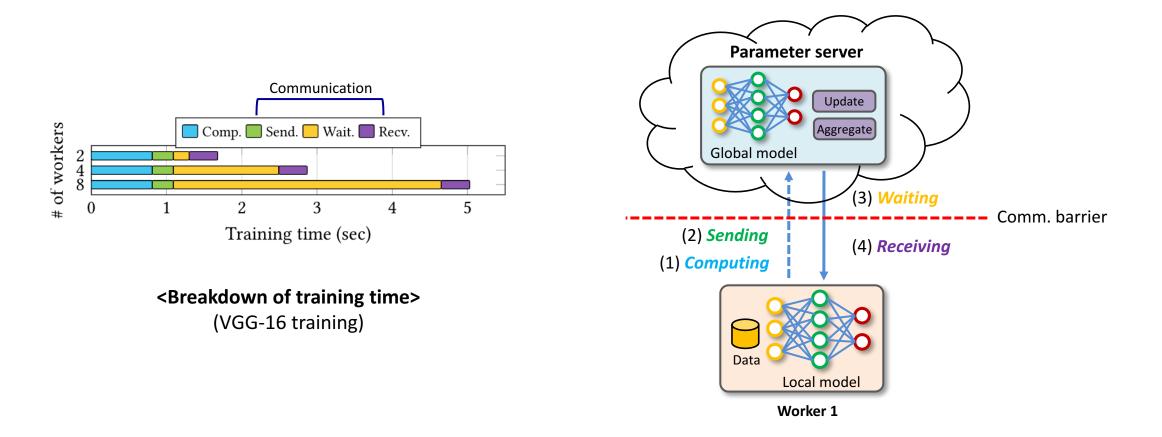


.....

Motivation: Symmetric Communication

□ The cause of performance degradation in centralized training

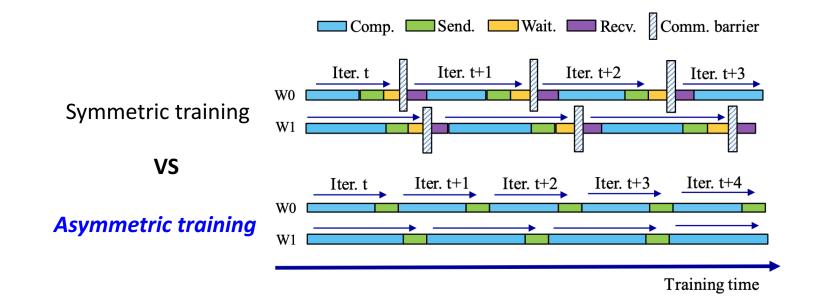
- Each worker *symmetrically* waits for the updated model from PS
- The PS bottleneck increases the waiting at communication barrier



To reduce the idle time of workers, *symmetrically* waiting for PS

Asymmetric training between PS and workers

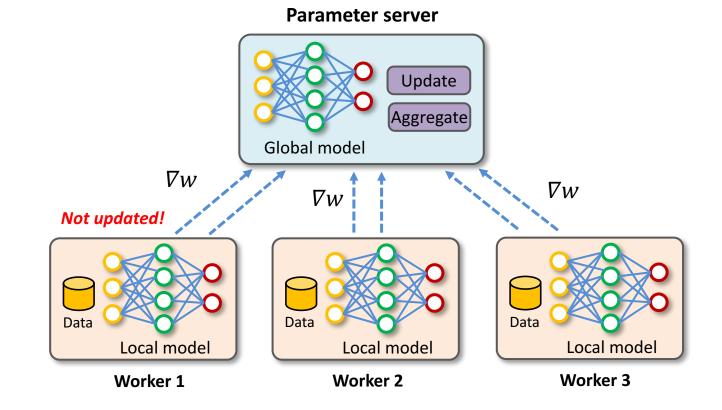
A worker sends gradients to PS, and then *immediately proceeds* to the next step



Limitation of Naïve Asymmetric Training

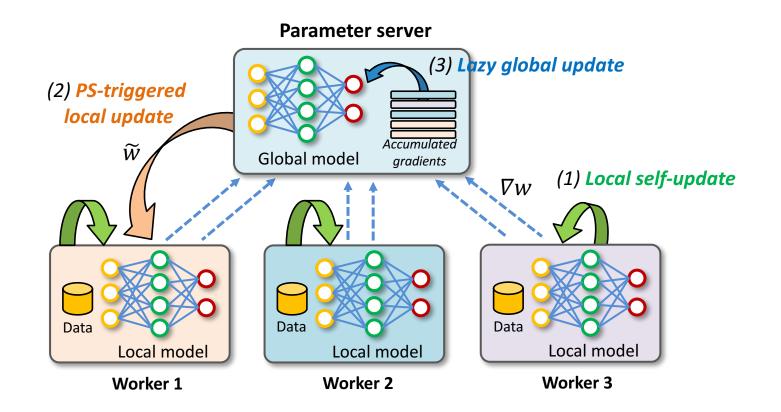
- □ The local model of each worker is *not updated*
 - Each worker *never receive the global model*

Degrading the quality of gradients computed at each worker



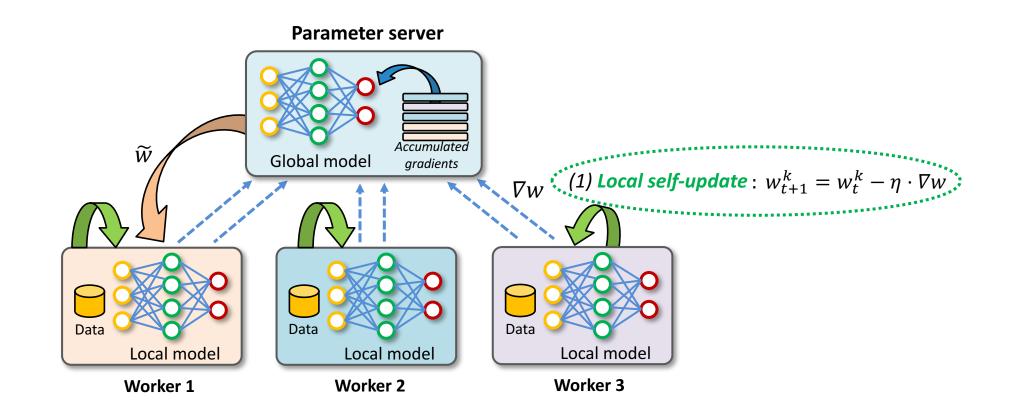
□ To speed up the model convergence

(1) Local self-update, (2) PS-triggered local update, and (3) Lazy global update



Each worker applies the computed gradients to its local model

Improving the quality of gradients computed at each worker



Strategy 2: PS-Triggered Local Update

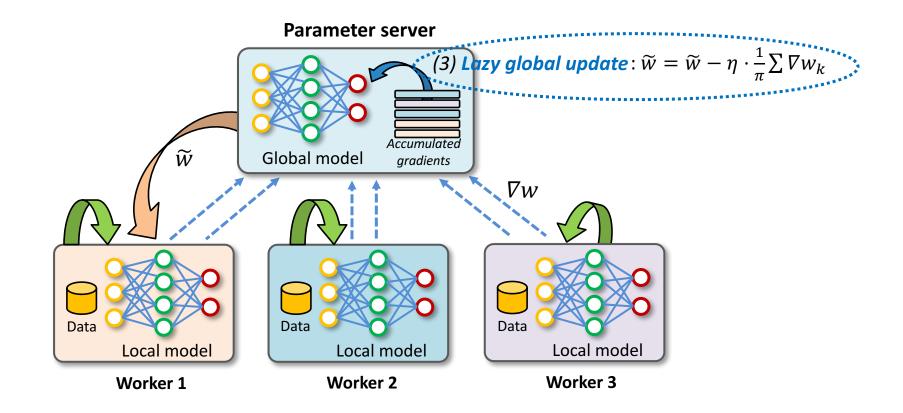
PS sends the up-to-date global model to each worker periodically

The local models of workers are mixed indirectly, reducing parameter variance



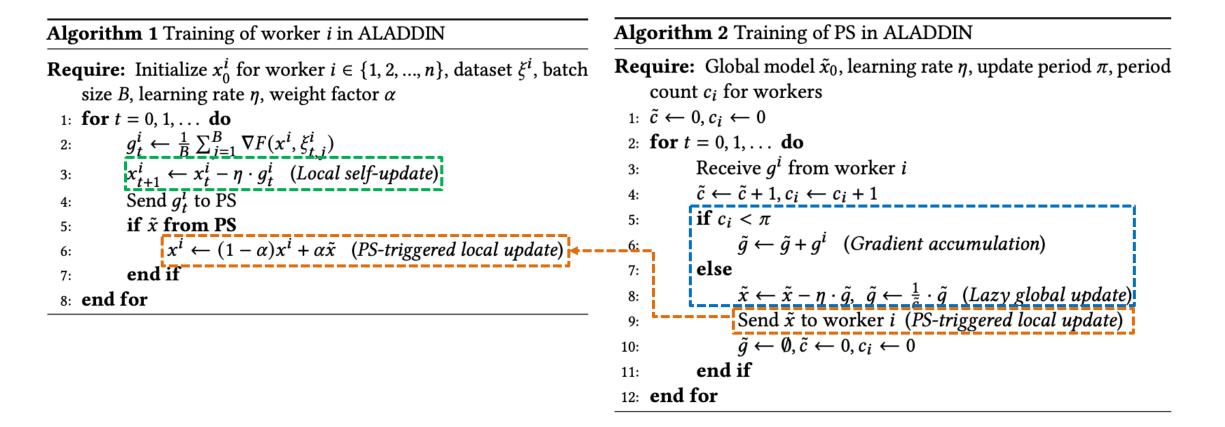
PS aggregates the gradients, and updates the global model *lazily*

Reducing the number of operations without any loss (e.g., apply_gradients())



Algorithms: ALADDIN

The entire training process



Requirements for the convergence on non-convex optimization

The mixing matrix of a distributed algorithm has to satisfies the two conditions:
Doubly-stochastic and spectral gap conditions

By lemmas 1 and 2, we show that the mixing matrix of ALADDIN satisfies the two conditions

Lemma 1 Let x_k^i and \tilde{x}_k be the local model of worker *i* and the global model at iteration *k* in ALADDIN, respectively. Then, the averaged model of all workers is equivalent to the global model.

$$\tilde{x}_k = \frac{1}{n} \sum_{i=1}^n x_k^i \tag{5}$$

Lemma 2 Let W_k be an $n \times n$ mixing matrix and α be the weight of the global model in the PS-triggered local update. Then, there exists W_k causing the same consequence as the training of ALADDIN.

$$W_{k} = \begin{bmatrix} 1 - \frac{\alpha}{n}(n-1) & \frac{\alpha}{n} & \cdots & \frac{\alpha}{n} \\ \frac{\alpha}{n} & 1 - \frac{\alpha}{n}(n-1) & \cdots & \frac{\alpha}{n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\alpha}{n} & \frac{\alpha}{n} & \cdots & 1 - \frac{\alpha}{n}(n-1) \end{bmatrix}$$
(6)

Convergence Analysis for ALADDIN

Theorem 1 (Convergence of ALADDIN)

The convergence rate of ALADDIN is consistent with that of single-worker training

Corollary 1 (Linear speedup)

The convergence is accelerated linearly as the number of workers increases

Theorem 1 (Convergence of ALADDIN) Let L, σ^2 , ζ , π , and \tilde{x}^* be the Lipschitz constant, variance bound for gradients, magnitude of second largest eigenvalue, update period, and optimal model, respectively. Then, the convergence rate of ALADDIN is as follows.

$$\frac{1}{K} \sum_{k=1}^{K} \mathbb{E} \|\nabla f(\tilde{x}_{k})\|^{2} \leq \frac{2[f(\tilde{x}_{0}) - f(\tilde{x}_{*})]}{\eta K} + \frac{\eta L \sigma^{2}}{n} + \eta^{2} L^{2} \sigma^{2} \left(\frac{1+\zeta^{2}}{1-\zeta^{2}}\pi - 1\right)$$
(7)

Corollary 1 With a proper learning rate $\eta = \frac{1}{L}\sqrt{\frac{n}{K}}$, $\frac{1}{K}\sum_{k=1}^{K} \mathbb{E} \|\nabla f(\tilde{x}_{k})\|^{2} \leq \frac{2L[f(\tilde{x}_{0}) - f(\tilde{x}_{*})] + \sigma^{2}}{\sqrt{nK}}$ $+ \frac{n\sigma^{2}}{K} \left(\frac{1 + \zeta^{2}}{1 - \zeta^{2}}\pi - 1\right)$ $\longrightarrow O\left(\frac{1}{\sqrt{nK}}\right)$

(8)

□ Models

ResNet-50 (23M parameters), VGG-16 (128M parameters)

Dataset

- CIFAR-10 (50K train images, 10K test images)
- ImageNet-1K (1.2M train images, 50K test images)

Competing algorithms

- Centralized: ASP (NeuIPS'11), EASGD (NeuIPS'15)
- Decentralized: AR-SGD, SGP (ICML'19)

□ The cluster with four machines

- 2 * NVIDIA 2080Ti GPU (14.90 TFLOPS, 12GB memory)
- Intel i-7 CPU with 64 GB memory
- 10Gbps Ethernet

Q1: Model accuracy

Does ALADDIN provide the higher accuracy than existing algorithms?

Q2: Convergence rate

Does ALADDIN provide the higher convergence rate than existing algorithms?

Q3: Scalability (speedup w.r.t # of numbers)

Does ALADDIN provide the better scalability than existing algorithms?

Q4: Robustness to heterogeneous environments

Does ALADDIN is more robust to heterogeneous environments than existing algorithms?

Q1: Model Accuracy

🗆 Goal

To compare the *final accuracy* and *training time*

Results

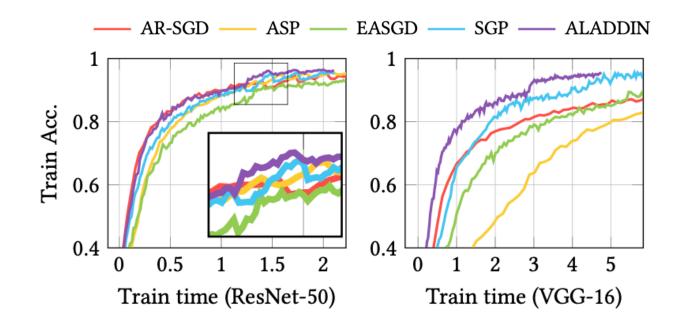
	ResNet-50 (CIFAR-10)				VGG-16 (CIFAR-10)			
	Test Acc.	Train time	Test Acc. (1 hrs.)	Train time (90%)	Test Acc.	Train time	Test Acc. (2 hrs.)	Train time (90%)
AR-SGD	0.9353	2.37 hrs.	0.8992	0.98 hrs.	0.9238	14.46 hrs.	0.7765	6.40 hrs.
ASP	0.9315	2.24 hrs.	0.8810	1.16 hrs.	0.9171	10.96 hrs.	0.4973	8.22 hrs.
EASGD	0.9112	2.21 hrs.	0.8431	1.36 hrs.	0.9124	9.04 hrs.	0.7002	6.18 hrs.
SGP	0.9340	2.11 hrs.	0.8839	1.15 hrs.	0.9228	6.66 hrs.	0.8247	3.94 hrs.
ALADDIN	0.9378	1.81 hrs.	0.9071	0.92 hrs.	0.9226	4.97 hrs.	0.8687	2.87 hrs.

The models trained by ALADDIN converge to high accuracies comparable to those of AR-SGD (the ground truth)

ALADDIN finishes the training in *shortest time* for all cases

To compare the *convergence rate* with respect to training time

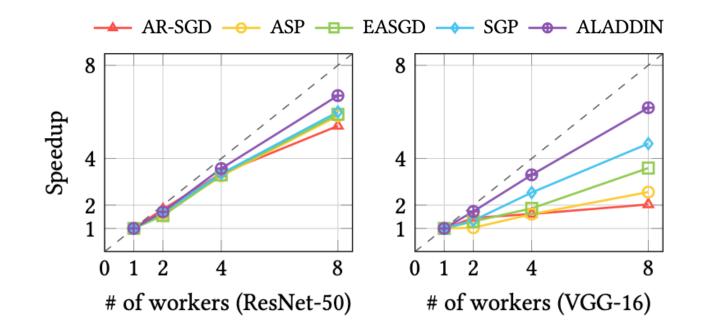
Results



ALADDIN outperforms all competing algorithms in the time-wise convergence rate
Achieving highest accuracies within the given time

To compare *scalability* with the increasing number of workers

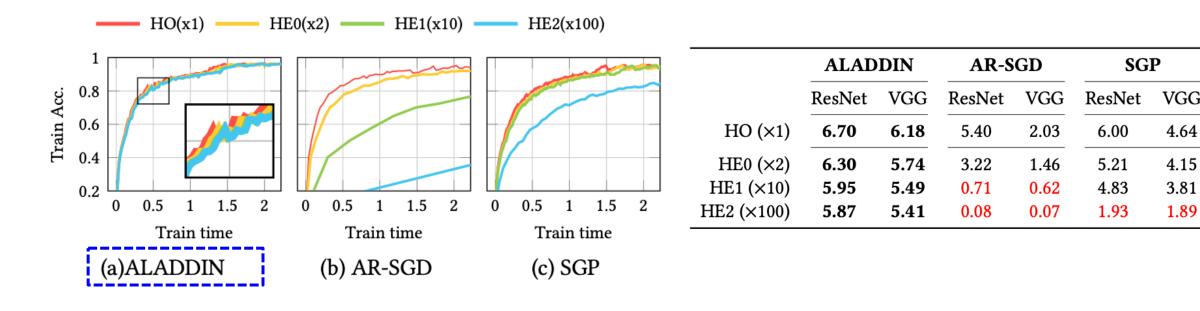
Results



ALADDIN provides the best speed-ups (almost linear) in both models and datasets

To compare the *robustness* to heterogeneous environments (x2, x10, x100)

Results



ALADDIN is most robust to all heterogeneous clusters

□ In terms of both *convergence rate* and *speedup*

We identified the deficiencies of centralized and decentralized training

Large communication overhead and increased parameter variance problems

□ We proposed a novel asymmetric training algorithm, ALADDIN

Successfully addressing both problems at the same time

□ We provided the theoretical analysis for the convergence of ALADDIN

□ Through comprehensive experiments, we showed that

- ALADDIN finishes the training within the shortest time, while achieving high accuracies comparable to those of a synchronous algorithm (AR-SGD)
- ALADDIN shows almost *linear speed-up* as the number of workers increases
- ALADDIN is most robust to heterogeneous environments

Thank You !

Email: koyunyong@hanyang.ac.kr