
1 /	29

ALADDIN:	Asymmetric	Centralized	Training
for	Distributed	Deep	Learning

2021-11-xx

Yunyong	Ko𝟏, Kibong	Choi𝟏,Hyunseung	Jei𝟐,Dongwon	Lee𝟑, 𝐚𝐧𝐝	Sang−Wook	Kim𝟏

Hanyang	University,	Republic	of	Korea𝟏

SK	Telecom,	Republic	of	Korea𝟐

The	Pennsylvania	State	University,	PA,	USA𝟑



2 /	29

oBackground
n Distributed deep learning
n Centralized and decentralized training

oProposed algorithm: ALADDIN
n Motivation and key idea
n Algorithm details
n Convergence analysis

oExperiments
oConclusions

Table	of	Contents



3 /	29

Challenge	of	Deep	Learning
oTraining of DNNs requires massive time

n The increasing sizes of DNN models and training datasets
1) Increasing computation overhead (forward, backward, and update)
2) Increasing the number of training iterations

17.5B

340M



4 /	29

Distributed	Deep	Learning
oData parallelism (our focus)

n Splitting and distributing training data into multiple workers

oModel parallelism
n Splitting and distributing a model into multiple workers

<Data	parallelism> <Model	parallelism>



5 /	29

Data	Parallelism	Approach
oSplitting and distributing training data into multiple workers

n Each worker trains a model based on its local data in parallel
n Then, the training results are aggregated via communication

Data

Local	model

Worker	1

Data

Local	model

Worker	2

Data

Local	model

Worker	3

Decentralized	training	

Data
Local	model

Worker	1

𝛻𝑤 𝑤’

Parameter	server

Global	model

Aggregate

Update

Centralized	training	

Local	model

Worker	2

Data
Local	model

Worker	3

Data



6 /	29

Centralized	Training
oThe parameter server (PS), managing the global model, aggregates
the training results from workers,

Data

Local	model

Worker	1

Data

Local	model

Worker	2

Data

Local	model

Worker	3

𝛻𝑤 𝑤’

Parameter	server

Global	model

Aggregate

Update

(1)	Compute gradients

(2)	Aggregate the	gradients
(3)	Update the	global	model

(4)	Update the	local	model



7 /	29

Deficiency	of	Centralized	Training
oLarge communication overhead

n The PS can be a bottleneck of the whole training
n More than 60% of the entire training (# of workers >= 4)

<Communication	overhead	w.r.t the	number	of	workers>
(VGG-16	training)



8 /	29

Decentralized	Training
oThe training results of workers are aggregated via peer-to-peer
communication
n To avoid the problem of PS being bottleneck

Data

Local	model

Worker	1

Data

Local	model

Worker	2

Data

Local	model

Worker	3

(1)	Train	its	local	model
(2)	Aggregate	the	results	via	p2p	communication	
(3)	Update	the	local	model



9 /	29

Deficiency	of	Decentralized	Training
oHigh parameter variance

n To sufficiently aggregate workers’ results via p2p communication is difficult

<Parameter	variance	as	the	training	progress>



10 /	29

Summary	of	Centralized	and	Decentralized	Training
oCentralized training

n Large communication overhead
n Low parameter variance among workers

oDecentralized training
n Small communication overhead
n High parameter variance among workers



11 /	29

Our	Research	Direction
oTo improve the performance of centralized training

n By addressing the problem of large communication overhead

Data
Local	model

Worker	1

Data
Local	model

Worker	2

Data
Local	model

Worker	3

𝛻𝑤 𝑤’

Parameter	server

Global	model

Aggregate

Update

Large	communication	overhead	!



12 /	29

Motivation:	Symmetric	Communication
oThe cause of performance degradation in centralized training

n Each worker symmetrically waits for the updated model from PS
n The PS bottleneck increases the waiting at communication barrier

<Breakdown	of	training	time>
(VGG-16	training)

Data
Local	model

Worker	1

Parameter	server

Global	model
Aggregate

Update

(2)	Sending (4)	Receiving
(1)	Computing

(3)	Waiting
Comm.	barrier

Communication



13 /	29

Key	Idea:	Asymmetric	Training
oGoal

n To reduce the idle time of workers, symmetrically waiting for PS

oAsymmetric training between PS and workers
n A worker sends gradients to PS, and then immediately proceeds to the next step

Symmetric	training

Asymmetric	training

VS



14 /	29

Limitation	of	Naïve	Asymmetric	Training
oThe local model of each worker is not updated

n Each worker never receive the global model
n Degrading the quality of gradients computed at each worker

Data

Local	model

Worker	1

Data

Local	model

Worker	2

Data

Local	model

Worker	3

𝛻𝑤

Parameter	server

Global	model

Aggregate

Update

𝛻𝑤 𝛻𝑤
Not	updated!



15 /	29

Three	Update	Strategies	of ALADDIN
oTo speed up the model convergence

n (1) Local self-update, (2) PS-triggered local update, and (3) Lazy global update

Data
Local	model

Worker	1

Data

Local	model

Worker	2

Data
Local	model

Worker	3

Parameter	server

Global	model

𝛻𝑤
𝑤+

(1)	Local	self-update

(2)	PS-triggered
local	update

(3)	Lazy	global	update

Accumulated	
gradients



16 /	29

Strategy	1:	Local	Self-Update
oEach worker applies the computed gradients to its local model

n Improving the quality of gradients computed at each worker

Data
Local	model

Worker	1

Data

Local	model

Worker	2

Data
Local	model

Worker	3

Parameter	server

Global	model

𝛻𝑤
𝑤+

:	𝑤-./0 = 𝑤-0 − 𝜂 ⋅ 𝛻𝑤(1)	Local	self-update

Accumulated	
gradients



17 /	29

Strategy	2:	PS-Triggered	Local	Update
oPS sends the up-to-date global model to each worker periodically

n The local models of workers are mixed indirectly, reducing parameter variance

Data
Local	model

Worker	1

Data

Local	model

Worker	2

Data
Local	model

Worker	3

Parameter	server

Global	model

𝛻𝑤
𝑤+

𝑤-./0 = (1 − 𝛼)𝑤-0−𝛼𝑤+ Accumulated	
gradients

(2)	PS-triggered	local	update	:



18 /	29

Strategy	3:	Lazy	Global	Update
oPS aggregates the gradients, and updates the global model lazily

n Reducing the number of operations without any loss (e.g., apply_gradients())

Data
Local	model

Worker	1

Data

Local	model

Worker	2

Data
Local	model

Worker	3

Parameter	server

Global	model

𝛻𝑤
𝑤+

:	𝑤+ = 𝑤+ − 𝜂 ⋅ /
9
∑𝛻𝑤0�
�

Accumulated	
gradients

(3)	Lazy	global	update



19 /	29

Algorithms:	ALADDIN
oThe entire training process



20 /	29

Convergence	Analysis	for	ALADDIN
oRequirements for the convergence on non-convex optimization

n The mixing matrix of a distributed algorithm has to satisfies the two conditions:
o Doubly-stochastic and spectral gap conditions

oBy lemmas 1 and 2, we show that the mixing matrix of ALADDIN satisfies
the two conditions



21 /	29

Convergence	Analysis	for	ALADDIN
oTheorem 1 (Convergence of ALADDIN)

n The convergence rate of ALADDIN is consistent with that of single-worker training

oCorollary 1 (Linear speedup)
n The convergence is accelerated linearly as the number of workers increases



22 /	29

Experimental	Setup
oModels

n ResNet-50 (23M parameters), VGG-16 (128M parameters)

oDataset
n CIFAR-10 (50K train images, 10K test images)
n ImageNet-1K (1.2M train images, 50K test images)

oCompeting algorithms
n Centralized: ASP (NeuIPS’11), EASGD (NeuIPS’15)
n Decentralized: AR-SGD, SGP (ICML’19)

oThe cluster with four machines
n 2 * NVIDIA 2080Ti GPU (14.90 TFLOPS, 12GB memory)
n Intel i-7 CPU with 64 GB memory
n 10Gbps Ethernet



23 /	29

Questions	to	Answer
oQ1: Model accuracy

n Does ALADDIN provide the higher accuracy than existing algorithms?

oQ2: Convergence rate
n Does ALADDIN provide the higher convergence rate than existing algorithms?

oQ3: Scalability (speedup w.r.t # of numbers)
n Does ALADDIN provide the better scalability than existing algorithms?

oQ4: Robustness to heterogeneous environments
n Does ALADDIN is more robust to heterogeneous environments than existing

algorithms?



24 /	29

Q1:	Model	Accuracy
oGoal

n To compare the final accuracy and training time

oResults

n The models trained by ALADDIN converge to high accuracies comparable to those of
AR-SGD (the ground truth)

n ALADDIN finishes the training in shortest time for all cases



25 /	29

Q2:	Convergence	Rate
oGoal

n To compare the convergence rate with respect to training time

oResults

n ALADDIN outperforms all competing algorithms in the time-wise convergence rate
o Achieving highest accuracies within the given time



26 /	29

Q3:	Scalability
oGoal

n To compare scalability with the increasing number of workers

oResults

n ALADDIN provides the best speed-ups (almost linear) in both models and datasets



27 /	29

Q4:	Robustness	to	heterogeneous	clusters
oGoal

n To compare the robustness to heterogeneous environments (x2, x10, x100)

oResults

n ALADDIN is most robust to all heterogeneous clusters
o In terms of both convergence rate and speedup



28 /	29

Conclusions
oWe identified the deficiencies of centralized and decentralized training

n Large communication overhead and increased parameter variance problems

oWe proposed a novel asymmetric training algorithm, ALADDIN
n Successfully addressing both problems at the same time

oWe provided the theoretical analysis for the convergence of ALADDIN

oThrough comprehensive experiments, we showed that
n ALADDIN finishes the training within the shortest time, while achieving high

accuracies comparable to those of a synchronous algorithm (AR-SGD)
n ALADDIN shows almost linear speed-up as the number of workers increases
n ALADDIN ismost robust to heterogeneous environments



29 /	29

Thank	You	!

Email:	koyunyong@hanyang.ac.kr


