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Challenge of Deep Learning

Training of DNNs requires massive time

B The increasing sizes of DNN models and training datasets

1) Increasing computation overhead (forward, backward, and update)
2) Increasing the number of training iterations
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Distributed Deep Learning

Data parallelism (our focus)
B Splitting and distributing training data into multiple workers

Model parallelism

B Splitting and distributing a model into multiple workers

Parameter Server P =p +Ap
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Data Parallelism Approach

Splitting and distributing training data into multiple workers

B Each worker trains a model based on its local data in parallel
B Then, the training results are aggregated via communication

Parameter server
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Centralized Training

The parameter server (PS), managing the global model, aggregates
the training results from workers,

Parameter server
4 )

(2) Aggregate the gradients
(3) Update the global model
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Deficiency of Centralized Training

Large communication overhead
B The PS can be a bottleneck of the whole training

B More than 60% of the entire training (# of workers >=4)
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Decentralized Training

communication

The training results of workers are aggregated via peer-to-peer

B To avoid the problem of PS being bottleneck
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Deficiency of Decentralized Training

High parameter variance
B To sufficiently aggregate workers’ results via p2p communication is difficult
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Summary of Centralized and Decentralized Training

Centralized training
B [arge communication overhead

B Low parameter variance among workers

Decentralized training
B Small communication overhead

B High parameter variance among workers
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Our Research Direction

Large communication overhead !

Parameter server
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Global model

To improve the performance of centralized training
B By addressing the problem of large communication overhead
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Motivation: Symmetric Communication

The cause of performance degradation in centralized training
B Each worker symmetrically waits for the updated model from PS

B The PS bottleneck increases the at communication barrier

Parameter server
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Key Idea: Asymmetric Training

B To reduce the idle time of workers, symmetrically waiting for PS

Asymmetric training between PS and workers
B A worker sends gradients to PS, and then immediately proceeds to the next step
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Limitation of Naive Asymmetric Training
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The local model of each worker is not updated
B Each worker never receive the global model

B Degrading the quality of gradients computed at each worker

Parameter server
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Three Update Strategies of ALADDIN
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To speed up the model convergence

B (1) Local self-update, (2) PS-triggered local update, and (3) Lazy global update
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Strategy 1: Local Self-Update

Each worker applies the computed gradients to its local model
B Improving the quality of gradients computed at each worker

Parameter server
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Strategy 2: PS-Triggered Local Update

PS sends the up-to-date global model to each worker periodically
B The local models of workers are mixed indirectly, reducing parameter variance
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Strategy 3: Lazy Global Update

PS aggregates the gradients, and updates the global model lazily
B Reducing the number of operations without any loss (e.g., apply _gradients())

Y3
*

@8{\(& Lhzy global update: W = W — 1) - _vak
A:ccumulatec;

L Global model gradients
/’ /’ A

-
7
’
b
’
’
<
S

Data Data Data
L Local model | L Local model L Local model |
Worker 1 Worker 2 Worker 3



Algorithms: ALADDIN

The entire training process

Algorithm 1 Training of worker i in ALADDIN Algorithm 2 Training of PS in ALADDIN
Require: Initialize x} for worker i € {1,2, ..., n}, dataset £’, batch ~ Require: Global model Xo, learning rate 7, update period 7, period
size B, learning rate n, weight factor « count c¢; for workers
1: fort—Ol . do 1: Ce—0,c; <0
2: Z F(x ) 2: fort=0,1,... do
3 :x;+1 -n-g (Local self- update)' 3: Receive ¢g* from worker i
¢ Sendql Thps- fL e ¢ Geltlecetl |
5: if x fromPs ______ > :lf Ci<7n ]
6 rx — (1-a)x' +ax (PS-triggered local update) |<-----6--| : g« g+g (Gradient accumulation) !
7 ¢V - 7.1 lelse :
s end for s Ao ion.g g g.d, (Lazy global updaio)
g; bmmmm—— :Send x to worker i (PS-triggered local update) |
10: Ge—0¢—0,cie—0
11: end if
12: end for




Convergence Analysis for ALADDIN

Requirements for the convergence on non-convex optimization

B The mixing matrix of a distributed algorithm has to satisfies the two conditions:
1 Doubly-stochastic and spectral gap conditions

By lemmas 1 and 2, we show that the mixing matrix of ALADDIN satisfies
the two conditions

Lemma 2 Let W} be an n X n mixing matrix and a be the weight of
the global model in the PS-triggered local update. Then, there exists
Wy causing the same consequence as the training of ALADDIN.

Lemma 1 Let xlic and Xj. be the local model of worker i and the global
model at iteration k in ALADDIN, respectively. Then, the averaged
model of all workers is equivalent to the global model.
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Convergence Analysis for ALADDIN

>

Theorem 1 (Convergence of ALADDIN)

B The convergence rate of ALADDIN is consistent with that of single-worker training

Corollary 1 (Linear speedup)

B The convergence is accelerated linearly as the number of workers increases

Theorem 1 (Convergence of ALADDIN) Let L, o2, {, m, and x* be

Corollary 1 With a proper learning rate n = % \ /I%,
the Lipschitz constant, variance bound for gradients, magnitude of sec-
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Experimental Setup

Models
B ResNet-50 (23M parameters), VGG-16 (128 M parameters)

Dataset
B CIFAR-10 (50K train images, 10K test images)
B ImageNet-1K (1.2M train images, 50K test images)

Competing algorithms
B Centralized: ASP (NeulPS’11), EASGD (NeulPS’15)
B Decentralized: AR-SGD, SGP (ICML'19)

The cluster with four machines

B 2 * NVIDIA 2080Ti GPU (14.90 TFLOPS, 12GB memory)
B Intel i-7 CPU with 64 GB memory

B 10Gbps Ethernet




Questions to Answer

Q1: Model accuracy
B Does ALADDIN provide the higher accuracy than existing algorithms?

Q2: Convergence rate
B Does ALADDIN provide the higher convergence rate than existing algorithms?

Q3: Scalability (speedup w.r.t # of numbers)

B Does ALADDIN provide the better scalability than existing algorithms?

Q4: Robustness to heterogeneous environments

B Does ALADDIN is more robust to heterogeneous environments than existing
algorithms?



Q1: Model Accuracy

Goal
B To compare the final accuracy and training time
Results
ResNet-50 (CIFAR-10) VGG-16 (CIFAR-10)
Test Acc. Train time 1;(;St}lic)(: ' Tre(ligr(l);i)me Test Acc. Train time T(eZSLrAs(.:)C ’ Tra(ligr(l);oi)me

AR-SGD 0.9353 2.37 hrs. 0.8992 0.98 hrs. 0.9238 14.46 hrs. 0.7765 6.40 hrs.

ASP 09315 2.24hrs. 0.8810 1.16 hrs. 0.9171 10.96 hrs. 0.4973 8.22 hrs.
EASGD 0.9112 2.21hrs. 0.8431 136hrs. 0.9124 9.04 hrs. 0.7002 6.18 hrs.
SGP 0.9340 2.11hrs. 0.8839 1.15hrs. 0.9228 6.66 hrs. 0.8247 3.94 hrs.

B The models trained by ALADDIN converge to high accuracies comparable to those of
AR-SGD (the ground truth)

B ALADDIN finishes the training in shortest time for all cases



Q2: Convergence Rate

B To compare the convergence rate with respect to training time

Results
—— AR-SGD ASP EASGD SGP —— ALADDIN
1 ; 1
Woam g
S >
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B ALADDIN outperforms all competing algorithms in the time-wise convergence rate
[ Achieving highest accuracies within the given time



Q3: Scalability

B To compare scalability with the increasing number of workers

Results
—a— AR-SGD ASP EASGD SGP —e— ALADDIN
8 8
2}
< 7
2 4 > / )
Q. %
AN »
2 2
1} 1
01 2 4 8 01 2 4 8
# of workers (ResNet-50) # of workers (VGG-16)

B ALADDIN provides the best speed-ups (almost linear) in both models and datasets



Q4: Robustness to heterogeneous clusters

Goal
B To compare the robustness to heterogeneous environments (x2, x10, x100)
Results
s HO(x1) HEO0(x2) HE1(x10) HE2(x100)
1 — N
g 08
< o6l f )
.§ : / HO (x1)
= 04 4 | HEO (x2)
0.2 L ‘ HE1 (x10)
0 05 1 15 2 0 05 1 15 2 0 05 1 15 2 HE2 (x100)
Train time Train time Train time
. (a)ALADDIN i (b) AR-SGD (c) SGP

ALADDIN AR-SGD SGP
ResNet VGG ResNet VGG ResNet VGG
6.70 6.18 5.40 2.03 6.00 4.64
6.30 5.74 3.22 1.46 5.21 4.15
5.95 5.49 0.71 0.62 4.83 3.81
5.87 5.41 0.08 0.07 1.93 1.89

B ALADDIN is most robust to all heterogeneous clusters

[J In terms of both convergence rate and speedup



Conclusions

We identified the deficiencies of centralized and decentralized training

B Large communication overhead and increased parameter variance problems

We proposed a novel asymmetric training algorithm, ALADDIN

B Successfully addressing both problems at the same time

We provided the theoretical analysis for the convergence of ALADDIN

Through comprehensive experiments, we showed that

B ALADDIN finishes the training within the shortest time, while achieving high
accuracies comparable to those of a synchronous algorithm (AR-SGD)

B ALADDIN shows almost linear speed-up as the number of workers increases
B ALADDIN is most robust to heterogeneous environments
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