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Challenge	of	Deep	Learning
oTraining of DNNs requires massive time

n The increasing sizes of DNN models and training datasets
1) Increasing computation overhead (forward, backward, and update)
2) Increasing the number of training iterations
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Distributed	Deep	Learning
oData parallelism (our focus)

n Splitting and distributing training data into multiple workers

oModel parallelism
n Splitting and distributing a model into multiple workers

<Data	parallelism> <Model	parallelism>
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Data	Parallelism	Approach
oSplitting and distributing training data into multiple workers

n Each worker trains a model based on its local data in parallel
n Then, the training results are aggregated via communication
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Centralized	Training
oThe parameter server (PS), managing the global model, aggregates
the training results from workers,
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Deficiency	of	Centralized	Training
oLarge communication overhead

n The PS can be a bottleneck of the whole training
n More than 60% of the entire training (# of workers >= 4)

<Communication	overhead	w.r.t the	number	of	workers>
(VGG-16	training)
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Decentralized	Training
oThe training results of workers are aggregated via peer-to-peer
communication
n To avoid the problem of PS being bottleneck
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Deficiency	of	Decentralized	Training
oHigh parameter variance

n To sufficiently aggregate workers’ results via p2p communication is difficult

<Parameter	variance	as	the	training	progress>
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Summary	of	Centralized	and	Decentralized	Training
oCentralized training

n Large communication overhead
n Low parameter variance among workers

oDecentralized training
n Small communication overhead
n High parameter variance among workers
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Our	Research	Direction
oTo improve the performance of centralized training

n By addressing the problem of large communication overhead

Data
Local	model

Worker	1

Data
Local	model

Worker	2

Data
Local	model

Worker	3

𝛻𝑤 𝑤’

Parameter	server

Global	model

Aggregate

Update

Large	communication	overhead	!



12 /	29

Motivation:	Symmetric	Communication
oThe cause of performance degradation in centralized training

n Each worker symmetrically waits for the updated model from PS
n The PS bottleneck increases the waiting at communication barrier

<Breakdown	of	training	time>
(VGG-16	training)
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Key	Idea:	Asymmetric	Training
oGoal

n To reduce the idle time of workers, symmetrically waiting for PS

oAsymmetric training between PS and workers
n A worker sends gradients to PS, and then immediately proceeds to the next step

Symmetric	training
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Limitation	of	Naïve	Asymmetric	Training
oThe local model of each worker is not updated

n Each worker never receive the global model
n Degrading the quality of gradients computed at each worker
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Three	Update	Strategies	of ALADDIN
oTo speed up the model convergence

n (1) Local self-update, (2) PS-triggered local update, and (3) Lazy global update
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Strategy	1:	Local	Self-Update
oEach worker applies the computed gradients to its local model

n Improving the quality of gradients computed at each worker
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Strategy	2:	PS-Triggered	Local	Update
oPS sends the up-to-date global model to each worker periodically

n The local models of workers are mixed indirectly, reducing parameter variance
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Strategy	3:	Lazy	Global	Update
oPS aggregates the gradients, and updates the global model lazily

n Reducing the number of operations without any loss (e.g., apply_gradients())
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Algorithms:	ALADDIN
oThe entire training process
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Convergence	Analysis	for	ALADDIN
oRequirements for the convergence on non-convex optimization

n The mixing matrix of a distributed algorithm has to satisfies the two conditions:
o Doubly-stochastic and spectral gap conditions

oBy lemmas 1 and 2, we show that the mixing matrix of ALADDIN satisfies
the two conditions
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Convergence	Analysis	for	ALADDIN
oTheorem 1 (Convergence of ALADDIN)

n The convergence rate of ALADDIN is consistent with that of single-worker training

oCorollary 1 (Linear speedup)
n The convergence is accelerated linearly as the number of workers increases
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Experimental	Setup
oModels

n ResNet-50 (23M parameters), VGG-16 (128M parameters)

oDataset
n CIFAR-10 (50K train images, 10K test images)
n ImageNet-1K (1.2M train images, 50K test images)

oCompeting algorithms
n Centralized: ASP (NeuIPS’11), EASGD (NeuIPS’15)
n Decentralized: AR-SGD, SGP (ICML’19)

oThe cluster with four machines
n 2 * NVIDIA 2080Ti GPU (14.90 TFLOPS, 12GB memory)
n Intel i-7 CPU with 64 GB memory
n 10Gbps Ethernet
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Questions	to	Answer
oQ1: Model accuracy

n Does ALADDIN provide the higher accuracy than existing algorithms?

oQ2: Convergence rate
n Does ALADDIN provide the higher convergence rate than existing algorithms?

oQ3: Scalability (speedup w.r.t # of numbers)
n Does ALADDIN provide the better scalability than existing algorithms?

oQ4: Robustness to heterogeneous environments
n Does ALADDIN is more robust to heterogeneous environments than existing

algorithms?
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Q1:	Model	Accuracy
oGoal

n To compare the final accuracy and training time

oResults

n The models trained by ALADDIN converge to high accuracies comparable to those of
AR-SGD (the ground truth)

n ALADDIN finishes the training in shortest time for all cases
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Q2:	Convergence	Rate
oGoal

n To compare the convergence rate with respect to training time

oResults

n ALADDIN outperforms all competing algorithms in the time-wise convergence rate
o Achieving highest accuracies within the given time
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Q3:	Scalability
oGoal

n To compare scalability with the increasing number of workers

oResults

n ALADDIN provides the best speed-ups (almost linear) in both models and datasets
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Q4:	Robustness	to	heterogeneous	clusters
oGoal

n To compare the robustness to heterogeneous environments (x2, x10, x100)

oResults

n ALADDIN is most robust to all heterogeneous clusters
o In terms of both convergence rate and speedup
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Conclusions
oWe identified the deficiencies of centralized and decentralized training

n Large communication overhead and increased parameter variance problems

oWe proposed a novel asymmetric training algorithm, ALADDIN
n Successfully addressing both problems at the same time

oWe provided the theoretical analysis for the convergence of ALADDIN

oThrough comprehensive experiments, we showed that
n ALADDIN finishes the training within the shortest time, while achieving high

accuracies comparable to those of a synchronous algorithm (AR-SGD)
n ALADDIN shows almost linear speed-up as the number of workers increases
n ALADDIN ismost robust to heterogeneous environments
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Thank	You	!

Email:	koyunyong@hanyang.ac.kr


