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ABSTRACT
To speed up the training of massive deep neural network (DNN)
models, distributed training has been widely studied. In general, a
centralized training, a type of distributed training, suffers from the
communication bottleneck between a parameter server (PS) and
workers. On the other hand, a decentralized training suffers from
increased parameter variance among workers that causes slower
model convergence. Addressing this dilemma, in this work, we pro-
pose a novel centralized training algorithm, ALADDIN, employing
“asymmetric" communication between PS and workers for the PS
bottleneck problem and novel updating strategies for both local
and global parameters to mitigate the increased variance problem.
Through a convergence analysis, we show that the convergence
rate of ALADDIN is 𝑂 ( 1√

𝑛𝑘
) on the non-convex problem, where 𝑛

is the number of workers and 𝑘 is the number of training iterations.
The empirical evaluation using ResNet-50 and VGG-16 models
demonstrates that (1) ALADDIN shows significantly better training
throughput with up to 191% and 34% improvement compared to a
synchronous algorithm and the state-of-the-art decentralized algo-
rithm, respectively, (2) models trained by ALADDIN converge to
the accuracies, comparable to those of the synchronous algorithm,
within the shortest time, and (3) the convergence of ALADDIN is
robust under various heterogeneous environments.
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1 INTRODUCTION
The recent success of deep learning in various fields is underlied
by large models and datasets. Though the great advance of a com-
putational accelerator such as GPU has dramatically increased the
training speed, training a large model with a large amount of data
still requires much time. Thus, several deep learning (DL) frame-
works such as Tensorflow and PyTorch train several popular models
in advance and provide the pre-trained models to users. However,
these pre-trained models are not likely appropriate for the applica-
tion that users want to apply to. Therefore, it is still important to
train a large model from scratch.

To efficiently train large deep neural network (DNN) models
such as ResNet-50 [11], VGG-16 [28], BERT [7], and GPT-3 [4] with
millions to billions of parameters, distributed training has been
widely studied [1, 3, 12, 14, 16, 20–22, 24, 25, 30, 36–38]. In dis-
tributed training with data parallelism, each worker node trains its
local model based on its local data, and then the training results
(gradients or parameters) at all workers are aggregated through
network communication. Such an aggregation can occur at a ded-
icated parameter server (PS) (i.e., Centralized) or at each worker
node via peer-to-peer communication (i.e., Decentralized). On the
other hand, the communication for the aggregation can be per-
formed either Synchronously or Asynchronously. Therefore, using
these two dimensions, existing distributed training algorithms can
be classified into four quadrants as shown in Table 1.

While synchronous training [9, 39], in general, has a good con-
vergence rate thanks to its parameter synchronization across all
workers, its synchronization overhead can be significant (especially
in heterogeneous environments) [8, 35]. On the other hand, asyn-
chronous training, especially centralized one [12, 25, 30, 36, 37, 40],
aims to reduce the synchronization overhead by employing asyn-
chronous communication between PS and workers, but suffers from
the problem of PS being a bottleneck. In general, centralized algo-
rithms have larger communication overhead than decentralized
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Figure 1: Communication overhead and parameter variance
(Y-axis) of a centralized algorithm (Hogwild) [25] and a de-
centralized algorithm (SGP) [1].

ones [24]. Decentralized training [1, 2, 21, 22, 31] aggregates the
training results of workers via peer-to-peer communication, avoid-
ing the bottleneck problem. However, it becomes more difficult to
aggregate the training results via peer-to-peer communication as
the size of model parameters and the number of workers increase.
It can result in the increased parameter variance among workers,
leading to delayed global model convergence.

These contrasting pros and cons of asynchronous centralized
and decentralized training are well demonstrated in our preliminary
evaluation (Figure 1). Figure 1(a) shows that centralized training
incurs more communication overhead while Figure 1(b) shows that
decentralized training has larger parameter variance. Motivated
from this demonstration, in this work, we aim to improve asynchro-
nous training, by addressing both problems of large communication
overhead and high parameter variance together. To this end, we
can consider two directions: (D1) to reduce the communication
overhead in centralized training, and (D2) to reduce the parameter
variance among workers in decentralized training. Between the
two directions, we excluded (D2) because it is not easy to achieve
(D2) efficiently in decentralized training, where global parameters
can be obtained only by averaging the parameters of all workers
via communication because they do not physically exist.

To achieve (D1), first of all, we note that “symmetric" communi-
cation between PS and workers is a critical factor that causes a large
communication overhead in centralized training. In the symmetric
communication, each worker sends its training result to PS and has
to wait for the updated parameters from PS. By this symmetricity,
when PS becomes a bottleneck, workers are unable to begin the next
iteration, waiting for PS. Therefore, by lifting up this symmetric-
ity, we propose a novel approach to centralized data parallelism,
Asymmetric centraLized trAining for Distributed Deep learnINg
(ALADDIN) that employs (1) “asymmetric” communication be-
tween PS and workers so that workers begin the next iteration
without waiting for the updated global parameters from PS, and (2)
novel updating strategies for both local and global parameters to
mitigate the problem of increased parameter variance.

In addition, we show that the model trained by ALADDIN con-
verges at the rate of 𝑂 ( 1√

𝑛𝑘
) on non-convex optimization, where 𝑛

is the number of workers and 𝑘 is the number of training iterations.
Note that this rate is consistent with those of SGD and existing
state-of-the-art works [1, 22]. Through comprehensive experiments,
we demonstrate that (1) ALADDIN provides training throughput
up to 191% and 34% higher than a synchronous decentralized algo-
rithm (AR-SGD) and a state-of-the-art asynchronous decentralized

Table 1: Quadrant classification of existing distributed train-
ing algorithms (elaborated in Section 2)

Centralized Decentralized

Synchronous BSP AR-SGD

Asynchronous ASP, SSP, EASGD
DSSP, ALADDIN

GoSGD, D-PSGD
AD-PSGD, SGP

algorithm (SGP), respectively, (2) models trained by ALADDIN con-
verge to the accuracies, comparable to those of AR-SGD within
the shortest time, and (3) the convergence of ALADDIN is more
robust than those of AR-SGD and SGP to various heterogeneous
environments. The main contributions of this work is as follows:
• Identifying the deficiencies of both centralized and decentral-
ized training – i.e., large communication overhead and in-
creased parameter variance problems.
• Proposing a novel asymmetric centralized training algorithm,
named as ALADDIN, successfully addressing both problems
simultaneously.
• Providing theoretical analysis for the convergence of ALADDIN
on non-convex optimization.
• Comprehensive evaluation verifying the effectiveness of AL-
ADDIN in terms of the convergence rate, scalability, and ro-
bustness under heterogeneous environments.

2 RELATEDWORK
Centralized training. In centralized training, a dedicated PS man-
ages the global parameters by aggregating the training results of
workers. In bulk synchronous parallel (BSP) [9, 39], a synchronous
centralized algorithm, the parameters of all workers are synchro-
nized via PS that aggregates the gradients from all workers at once.
Thus, all workers train the model in a consistent direction. How-
ever, the synchronization overhead can be significant, especially
in a heterogeneous cluster. To reduce the overhead, a lot of asyn-
chronous training algorithms have been studied. In asynchronous
parallel (ASP) [25], PS aggregates the gradients from workers in an
asynchronous manner: PS does not wait for all workers; instead, PS
processes the gradients from each worker individually. However,
the parameter variance among workers could be large if there are
workers with different training speeds, causing global model con-
vergence delayed. Stale synchronous parallel (SSP) [12], positioned
in the middle of BSP and ASP, relaxes the parameter synchroniza-
tion by allowing workers to train with different parameter versions.
However, SSP controls the difference among the versions to be al-
ways less than the pre-defined threshold. Dynamic SSP (DSSP) [38]
further improves SSP by varying the threshold dynamically as train-
ing progresses. Elastic averaging SGD (EASGD) [37] reduces the
communication overhead via periodic communication between PS
and workers. The centralized training algorithms often suffer from
the problem of PS being a bottleneck because PS aggregates training
results from all workers. To mitigate this problem, parameter shard-
ing [5, 15] is generally applied to centralized training algorithms.
This technique divides global parameters and distributes them into
multiple PSs to process them in parallel.
Decentralized training. In decentralized training, the training
results of workers are aggregated via peer-to-peer communication
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Figure 2: Breakdown of training timewith 2, 4, 8 workers for
the VGG-16 model in centralized training.

without PS. In AllReduce-SGD (AR-SGD) [10, 27], a synchronous
decentralized algorithm, the parameters of all workers are synchro-
nized via AllReduce communication at every iteration. In synchro-
nous training, Goyal et al. [10] uses the linear learning rate scaling
with gradual warm-up (LSW) to speed up the synchronous training
with large batch size. AdaScale [16] further improves LSW [10] by
applying more reliable learning rate considering the variance of
gradients. The synchronization overhead, however, can be a big
problem like BSP. In decentralized parallel SGD (D-PSGD) [21],
each worker exchanges its parameters with another worker and
updates its parameters by averaging them at every iteration. D-
PSGD proved that the convergence rate of decentralized training is
comparable to that of SGD through the theoretical analysis. AD-
PSGD [22], the asynchronous version of D-PSGD, improves the
training performance of D-PSGD by allowing workers to commu-
nicate with each other asynchronously. The Stochastic Gradient
Push (SGP) [1], a state-of-the-art decentralized training algorithm,
adopts the push-sum gossip algorithm [17] to efficiently aggregate
parameter aggregation of workers. The Cooperative-SGD [29] pro-
poses a unified framework for generalizing existing distributed
training algorithms and provides its convergence analysis within
the generalized framework, where fully-synchronous SGD (BSP,
AR-SGD), EASGD, and D-PSGD are represented as its special cases.
[23] provides a general consistency condition that covers existing
asynchronous distributed training algorithms.

3 THE PROPOSED ALGORITHM: ALADDIN
In this work, we consider the following problem:

min
𝑥1,...,𝑥𝑛,𝑥̃

𝑛∑
𝑖=1
E[𝐹 (𝑥𝑖 , 𝜉𝑖 )] + 𝜌

2
| |𝑥𝑖 − 𝑥 | |2, (1)

where 𝑛 is the number of workers, 𝑥𝑖 is the set of local parameters
of worker 𝑖 , 𝜉𝑖 is the local data of worker 𝑖 , 𝐹 (𝑥𝑖 , 𝜉𝑖 ) is the local
loss function of the local parameters 𝑥𝑖 given data samples 𝜉𝑖 , and
𝑥 is the global parameters. The goal of Eq. 1 is twofold: (1) the
first term minimizes the loss function (thus maximizing accuracy)
and (2) the second term minimizes the variance between local and
global parameters (thus preserving the consistency among parame-
ters across workers). ALADDIN achieves both objectives in Eq. 1
and successfully addresses the deficiencies of both centralized and
decentralized training.

3.1 Asymmetric Centralized Training
Breakdown of centralized training. As explained in Section 1,
our research direction (D1) is to improve centralized training by

Training time

(b)

(c)

Comm. barrierSend. Wait. Recv.Comp.

(a) W0
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Figure 3: Three types of communication: (a) Synchronous,
(b) Asynchronous, and (c) Asymmetric.

reducing the large communication overhead caused by the PS bot-
tleneck. Prior to developing a new centralized algorithm, we in-
vestigate why the PS bottleneck significantly increases the com-
munication overhead in centralized training. We measure both
computation and communication times at each training iteration
in a centralized training algorithm, ASP (i.e., Hogwild) [25], where
communication is divided into three parts: sending, waiting, and
receiving. Figure 2 shows the breakdown of the total measured time
(computing, sending, waiting, and receiving) in the training of the
VGG-16 model. As the number of workers increases, the overall
communication time increases proportionally. In particular, the
communication time occupies more than 80% of the total training
time when there are 8 workers.

Further, we observe that most of the increased communication
time comes from the “waiting" time as shown in Figure 2. Looking
more closely, in centralized training, a worker communicates with
PS as follows: a worker (1) sends its training results (i.e., gradients)
to PS, (2) waits for PS to send back the newly updated global pa-
rameters, (3) replaces its local parameters by the global parameters,
and then (4) proceeds to the next iteration. Therefore, workers are
not able to proceed to the next iteration while “waiting" for PS in
step (2). This result gives us an important lesson: to reduce the
overall communication cost in centralized training, it is critical to
reduce the idle time of workers, “symmetrically" waiting for the
updated global parameters from PS. From this understanding, next,
we propose a novel “asymmetric training" between PS and workers.
Effect of asymmetric training. Figure 3 illustrates the differ-
ence between our asymmetric training and existing synchronous
and asynchronous training. In synchronous communication (Fig-
ure 3(a)), the parameters of all workers are synchronized simul-
taneously at a communication barrier. The synchronization over-
head might be quite significant when some workers fall behind
other workers (i.e., straggler), which may degrade the training per-
formance significantly. While, asynchronous communication (Fig-
ure 3(b)) between PS and workers improves upon synchronous one
(Figure 3(a)) such that a worker does not need to wait for stragglers
to proceed to its next iteration. As shown in Figure 3(b), however,
there are still communication barriers at the end of every iteration
in asynchronous training due to its “symmetric" communication.
We highlight again that this is a critical factor that causes high
communication overhead in asynchronous centralized training.
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On the other hand, in our asymmetric training, a worker sends
its training results to PS and then immediately proceeds to the next
iteration without waiting for PS as illustrated in Figure 3(c). Since
there is no communication barrier, a worker can train a model in a
“completely wait-free manner" regardless of whether PS being a bot-
tleneck or not at that time, which means that workers do not wait for
other workers nor PS. Thus, our asymmetric training can successfully
address the problem of large communication overhead caused by
the PS bottleneck. From this point of view, existing asynchronous
centralized training algorithms such as ASP (i.e., Hogwild) [25],
SSP [12], and DSSP [38] can be considered as “partially wait-free."

In naive asymmetric training (Figure 3(c)), however, since work-
ers do not receive the global parameters from PS, the model param-
eters of workers are never updated. Then, it results in degrading
the quality of the gradients computed by workers, interfering with
the global model convergence. To address this issue, we propose
updating strategies for local and global parameters to speed up the
model convergence in our asymmetric training.

3.2 Parameter Update for Model Convergence
Updating local parameters. Let us explain the strategy for up-
dating local parameters of workers. The local parameters of each
worker are updated with respect to both local and global aspects.
From the local aspect, first, a worker not only sends the computed
gradients to PS asymmetrically, but also updates its local parameters
(i.e. local self-update) using 𝑥𝑖

𝑘+1 = 𝑥𝑖
𝑘
− 𝜂 · 𝑔𝑖

𝑘
, where 𝑥𝑖

𝑘
and 𝑔𝑖

𝑘
are the local model and local gradients of worker 𝑖 at iteration 𝑘 ,
respectively, and 𝜂 is the learning rate. Through this simple local
self-update, the quality of local gradients can be much improved
without receiving the global parameters from PS. However, the pa-
rameters of workers are trained only locally. Therefore, it is likely to
increase the parameter variance among workers, which means that
the variance of the gradients computed from their local parameters
also increases, adversely affecting the global model convergence.

For this reason, from the global aspect, second, we update local
parameters of workers by exploiting the up-to-date global param-
eters, sent from PS in every 𝜋 iterations at its own decision (i.e.,
PS-triggered local update). In this way, the local parameters of all
workers could be mixed indirectly through the global parameters,
which reduces the parameter variance among workers. Specifically,
inspired by Zhang et al. [37], we define the update rule for local
parameters of each worker 𝑥𝑖 , based on the problem formulation
represented in Eq. 1. By taking the gradient descent with respect to
𝑥𝑖 on Eq. 1, we get:

𝑥𝑖 = 𝑥𝑖 − 𝜂 · (𝑔𝑖 + 𝜌 (𝑥𝑖 − 𝑥)) (2)

Denote 𝛼 = 𝜂 · 𝜌 and 𝑥𝑖 = 𝑥𝑖 − 𝜂 · 𝑔𝑖𝑡 which can be considered
equal to the local parameter update of worker 𝑖 . Then, we get the
following update rule for 𝑥𝑖 :

𝑥𝑖 = 𝑥𝑖 − 𝛼 (𝑥𝑖 − 𝑥) = (1 − 𝛼)𝑥𝑖 + 𝛼𝑥 (3)

Eq. 3 implies that a worker updates its local parameters by taking
the weighted average between its local parameters 𝑥𝑖 and the global
parameters 𝑥 where 𝛼 is an oscillating weight factor between local
and global parameters. We note that this formulation can generalize
diverse parameter update rules in distributed training. For example,
if 𝛼 = 0, it is the same as local training only (i.e., ensemble), while,

Algorithm 1 Training of worker i in ALADDIN

Require: Initialize 𝑥𝑖0 for worker 𝑖 ∈ {1, 2, ..., 𝑛}, dataset 𝜉
𝑖 , batch

size 𝐵, learning rate 𝜂
1: for 𝑡 = 0, 1, . . . do
2: 𝑔𝑖𝑡 ←

1
𝐵

∑𝐵
𝑗=1 ∇𝐹 (𝑥𝑖 , 𝜉𝑖𝑡, 𝑗 )

3: 𝑥𝑖
𝑡+1 ← 𝑥𝑖𝑡 − 𝜂 · 𝑔𝑖𝑡 (Local self-update)

4: Send 𝑔𝑖𝑡 to PS
5: if 𝑥, 𝛼𝑖 from PS
6: 𝑥𝑖 ← (1 − 𝛼𝑖 )𝑥𝑖 + 𝛼𝑖𝑥 (PS-triggered local update)
7: end if
8: end for

if 𝛼 = 1, it degenerates to asynchronous centralized training algo-
rithms (e.g., Hogwild [25]) where local parameters of each worker
are completely replaced by the global parameters.

We set the weight 𝛼 based on the following intuition. The less the
amount of the training results of a worker is applied to the global
parameters, the larger the distance between the local parameters of
the worker and the global parameters becomes. By this intuition,
the variance may increase more if the number of workers 𝑛 and the
update period 𝜋 get larger. Thus, we set 𝛼 = 1 − 1√

𝑛𝜋
to increase

𝛼 with the increasing number of workers 𝑛 and update period 𝜋 ,
helping local parameters of workers to quickly catch up the global
parameters. Thus, theweight of global parameters𝛼 is automatically
decided by hyperparameter 𝜋 and the number of workers 𝑛.

As we explained, hyperparameter 𝜋 controls the period for PS-
triggered local update of each worker. When 𝜋 is large, each worker
trains its model in many iterations locally without receiving the
global parameters from PS. Thus, the training throughput of each
worker per unit time increases, while the parameter variance among
workers also increases, which may adversely affects the model con-
vergence. On the other hand, when 𝜋 is small, each worker receives
the global parameters from PS frequently, which can degrade the
overall training performance of ALADDIN. Therefore, the model
convergence and training performance of ALADDIN are in a trade-
off relationship according to the value of 𝜋 . We will empirically
show the impact of 𝜋 on model convergence and training perfor-
mance of ALADDIN in Section 5.6. The whole training process of
a worker is described in Algorithm 1. Lines 3 and 6 represent the
local parameter updates in local and global aspects, respectively.

Our strategy for updating local parameters has several advan-
tages in terms of model convergence and training performance,
compared to existing work [1, 22, 29, 37]. First, as explained in
Section 1, since ALADDIN belongs to centralized training, the pa-
rameter variance among workers could be smaller than that in
decentralized training if the global parameters are directly exploited.
Second, unlike [29, 37] where workers communicate with PS (or
other workers) only when they reach the end of an update period,
workers send the gradients to the PS at every iteration even if they do
not reach the update period (i.e., asymmetric training). That is, the
gradients most recently computed from workers are included in the
global parameters. Thus, when a worker updates the local parame-
ters in the global aspect (i.e., the PS-triggered local update), the latest
information of all other workers are applied to its local parameters,
helping reduce further parameter variance among workers. Third,
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Algorithm 2 Training of PS in ALADDIN
Require: Global model 𝑥0, learning rate 𝜂, update period 𝜋 , period

count 𝑐𝑖 for workers
1: 𝑐 ← 0, 𝑐𝑖 ← 0
2: for 𝑡 = 0, 1, . . . do
3: Receive 𝑔𝑖 from worker 𝑖
4: 𝑐 ← 𝑐 + 1, 𝑐𝑖 ← 𝑐𝑖 + 1
5: if 𝑐𝑖 < 𝜋

6: 𝑔← 𝑔 + 𝑔𝑖 (Gradient accumulation)
7: else
8: 𝑥 ← 𝑥 − 𝜂 · 𝑔, 𝑔← 1

𝑐
· 𝑔 (Lazy global update)

9: 𝛼𝑖 ← 1 − 1√
𝑐

10: Send 𝑥 to worker 𝑖 (PS-triggered local update)
11: 𝑔← ∅, 𝑐 ← 0, 𝑐𝑖 ← 0
12: end if
13: end for

in our PS-triggered local update, PS sends the global parameters
to workers independently while workers are training their models.
As a result, workers do not wait for PS, in order to receive global
parameters (i.e., no communication barrier). Thus, all workers can
train their models in a “completely wait-free" manner.
Updating global parameters. In our asymmetric training, PS
sends the global parameters to each worker only once in every
𝜋 iterations, rather than whenever PS receives local gradients from
a worker. As such, PS can postpone applying the gradients from
workers to the global parameters until the PS-triggered local update
is required without any loss. For this reason, we propose a lazy up-
dating strategy for global parameters (Lazy global update). In this
strategy, PS just accumulates the gradients from workers without
applying them to the global parameters, and updates the global
parameters only when the PS-triggered local update is required.
The whole training process of PS is described in Algorithm 2. Lines
8 and 9 represent lazy global update for the global parameters and
PS-triggered local update for local parameters, respectively.

This global update strategy also has advantages in terms of model
convergence and training performance, compared to existing asyn-
chronous centralized training algorithms [6, 12, 19, 25, 36, 38] that
adopt symmetric communication, where PS receives gradients from
a worker and reflects them in the global parameters individually for
that worker. First, our strategy can reduce the number of updating
operations considerably such as 𝑎𝑝𝑝𝑙𝑦_𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (·) in Tensorflow
(thus reducing computational cost of PS), compared to those of exist-
ing algorithms. This is because our strategy applies the accumulated
gradients to the global parameters only when the PS-triggered lo-
cal update is necessary. It means that the computing resources
of PS are used more efficiently in ALADDIN. Large batch train-
ing [10, 16, 32–34], whose goal is to speed up SGD, increases the
size of data samples processed in each iteration (i.e., batch size), in
order to reduce the variance of stochastic gradient. With the same
principle, second, our lazy global update also reduces the variance
of gradients by PS aggregating gradients from workers, which makes
the training of the global parameters in PS more reliable. We will
demonstrate the effectiveness of our updating strategies for local
and global parameters in Section 5.

3.3 Parameter Sharding
To effectively manage the communication overhead of a parame-
ter server (PS) in ALADDIN, we carefully apply the technique of
parameter sharding to ALADDIN. Parameter sharding [5, 6, 15]
divides global parameters and distributes them into multiple PSs to
process them in parallel. Layer-wise parameter sharing is normally
used because a layer is represented as a single data structure in
many DL frameworks (e.g., Tensor in Tensorflow) so that it can be
processed sequentially. In some DNN models, however, a single
layer may contain the majority of the entire model parameters.
For instance, in the VGG-16 model, the last two fully-connected
layers are in charge of more than 90% of all parameters. In this case,
the PS in charge of the extremely large layers suffers from a big
burden, thereby becoming a bottleneck in the overall training. To
address this issue, we apply memory-wise parameter sharding to
our algorithm. Memory-wise sharding defines the maximum size
of sharded parameters and has multiple PSs process the parameters
in a layer together if it is larger than the maximum size.

4 CONVERGENCE ANALYSIS
In this section, we show that the model trained by ALADDIN con-
verge at a consistent rate with that of SGD and existing state-of-the-
art algorithms [1, 22, 29] on non-convex optimization. Our analysis
is based on [29] that proves the averaged model of all workers
converges when the models of workers are updated by Eq. 4.

𝑋𝑘+1 = (𝑋𝑘−𝜂 ·𝐺𝑘 )·𝑊𝑘 , 𝑋𝑘 = [𝑥1
𝑘
, · · · , 𝑥𝑛

𝑘
],𝐺𝑘 = [𝑔1

𝑘
, · · · , 𝑔𝑛

𝑘
] (4)

where 𝑥𝑖
𝑘
is the local model of worker 𝑖 at iteration 𝑘 , 𝑔𝑖

𝑘
is 𝑖’s gra-

dients at iteration 𝑘 , and 𝜂 is the learning rate.𝑊𝑘 is an 𝑛×𝑛 mixing
matrix representing the relationship among workers, consisting
of 𝑤𝑖 𝑗 that is the (𝑖, 𝑗)𝑡ℎ element of the mixing matrix𝑊𝑘 repre-
senting the weight of worker 𝑖 in the averaged model at worker
𝑗 . To guarantee the model convergence,𝑊𝑘 has to satisfy that (1)
it is doubly-stochastic and (2) the magnitude of its second largest
eigenvalue is less than 1 (i.e., spectral gap) [29].

We will prove the convergence of ALADDIN by showing that𝑊𝑘
for ALADDIN satisfies the two conditions above. 1 We note again
that [29] shows that the averaged model of workers converges. On
the other hand, since ALADDIN is a centralized algorithm where
a global model is maintained physically in PS, we need to prove
the convergence of the global model at PS (not the averaged model).
To this end, we first show that in ALADDIN, the global model is
equivalent to the averaged model of all workers.
Lemma 1 Let 𝑥𝑖

𝑘
and 𝑥𝑘 be the local model of worker 𝑖 and the global

model at iteration 𝑘 in ALADDIN, respectively. Then, the averaged
model of all workers is equivalent to the global model.

𝑥𝑘 =
1
𝑛

𝑛∑
𝑖=1

𝑥𝑖
𝑘

(5)

In order to exploit the analysis results of [29], we need to repre-
sent the training of ALADDIN as the same form as Eq. 4. However,
since the dimension of𝑊𝑘 is 𝑛 × 𝑛 (thus only representing relation-
ships among workers not PS), aggregating (or mixing) local models
of workers via PS cannot be represented. Thus, we show that there

1All proofs of lemmas 1, 2 and theorem 1 are included in the following anonymous
link: https://sites.google.com/view/aladdin-proofs
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exists𝑊𝑘 that results in the same consequence as ALADDIN and
that𝑊𝑘 satisfies the two required conditions.
Lemma 2 Let𝑊𝑘 be an 𝑛 × 𝑛 mixing matrix and 𝛼 be the weight of
the global model in the PS-triggered local update. Then, there exists
𝑊𝑘 causing the same consequence as the training of ALADDIN.

𝑊𝑘 =


1 − 𝛼

𝑛 (𝑛 − 1)
𝛼
𝑛 · · · 𝛼

𝑛
𝛼
𝑛 1 − 𝛼

𝑛 (𝑛 − 1) · · ·
𝛼
𝑛

.

.

.
.
.
.

. . .
.
.
.

𝛼
𝑛

𝛼
𝑛 · · · 1 − 𝛼

𝑛 (𝑛 − 1)


(6)

Note that𝑊𝑘 in Eq. 6 is clearly doubly-stochastic, that is, the sum
of each column/raw is 1. Besides, the spectral gap condition is also
satisfied as all workers are connected to each other [13]. Now, by
lemmas 1 and 2, we are ready to use the analysis results of [29].
Theorem 1 (Convergence of ALADDIN) Let 𝐿, 𝜎2, 𝜁 , 𝜋 , and 𝑥∗ be
the Lipschitz constant, variance bound for gradients, magnitude of sec-
ond largest eigenvalue, update period, and optimal model, respectively.
Then, the convergence rate of ALADDIN is as follows.

1
𝐾

𝐾∑
𝑘=1
E∥∇𝑓 (𝑥𝑘 )∥2 ≤

2[𝑓 (𝑥0) − 𝑓 (𝑥∗)]
𝜂𝐾

+ 𝜂𝐿𝜎
2

𝑛

+𝜂2𝐿2𝜎2
(
1 + 𝜁 2

1 − 𝜁 2
𝜋 − 1

)
(7)

Remark 1 (Consistency with SGD) Despite the asymmetric com-
munication between PS and workers, the convergence rate of AL-
ADDIN is consistent with those of SGD and existing work [22, 29].
Corollary 1 With a proper learning rate 𝜂 = 1

𝐿

√
𝑛
𝐾
,

1
𝐾

𝐾∑
𝑘=1
E∥∇𝑓 (𝑥𝑘 )∥2 ≤

2𝐿[𝑓 (𝑥0) − 𝑓 (𝑥∗)] + 𝜎2√
𝑛𝐾

+𝑛𝜎
2

𝐾

(
1 + 𝜁 2

1 − 𝜁 2
𝜋 − 1

)
(8)

Remark 2 (Linear speedup) In the right side of Eq. 8, the first
term dominates the second term if the total number of iterations
𝐾 is sufficiently large. Thus, the convergence rate of ALADDIN
is 𝑂 ( 1√

𝑛𝐾
), which means that the convergence of ALADDIN is

accelerated linearly as the number of workers increases.

5 EXPERIMENTAL VALIDATION
In this section, we evaluate ALADDIN by answering the following
five research questions:

• RQ1. Does ALADDIN provide the convergence rate w.r.t. time
and epochs higher than existing algorithms?
• RQ2. Does ALADDIN provide the scalability w.r.t. the number
of workers better than existing algorithms?
• RQ3. How robust is ALADDIN to heterogeneous environments
more than existing algorithms?
• RQ4. How effective are the updating strategies of ALADDIN in
model convergence?
• RQ5. How sensitive are the model convergence and scalability
of ALADDIN to the hyperparameter 𝜋?

5.1 Experimental Setup
Datasets and models. We evaluate ALADDIN with two widely
used CNNmodels, ResNet-50 [11] and VGG-16 [28]. ResNet-50 with
23M parameters is a computation-intensive model, while VGG-16
with 138M parameters is a communication-intensive model. As the
training datasets for both models, we use CIFAR-10 [18] 2 [18]
and ImageNet-1K [26] datasets. 3 [26] datasets. CIFAR-10 consists
of 50K training images and 10K test images with 10 labels and
ImageNet-1K consists of about 1.2M training images and 5K test
images with 1K labels.
System configuration. We use TensorFlow 1.15 and MPICH 3.1.4
to implement all algorithms including ALADDIN on Ubuntu 18.04
OS. We evaluate ALADDIN on the cluster with four machines,
where each machine has two NVIDIA RTX 2080 Ti GPUs and an
Intel i7-9700k CPU with 64 GB memory. All machines are inter-
connected by 10Gbps Ethernet (Mellanox ConnectX-4Lx).
Algorithms. We compare ALADDIN with two centralized algo-
rithms, ASP (i.e., Hogwild) [25] and EASGD [37], and two decentral-
ized algorithms, AR-SGD [10] and the state-of-the-art decentralized
algorithm SGP [1]. We selected ASP and EASGD employing sym-
metric communication between PS and workers, to compare the
effect of the asymmetric training of ALADDIN. We also selected
SGP for a decentralized algorithm because it is reported that SGP
outperforms D-PSGD and AD-PSGD in [1]. AR-SGD, a synchronous
algorithm, is used as the baseline. For EASGD, we set a moving av-
erage rate as 0.9

𝑛 and a communication period as 2 as recommended
in [37]. We use 1-overlap SGP with the directed exponential graph
as recommended in [1]. For ALADDIN, we empirically found the
best values for the update period 𝜋 , and set 𝜋 as 4 for both models.
The experimental results about the effects of hyerparameter 𝜋 on
model convergence and training performance of ALADDIN are in-
cluded in Section 5.6. We note that the weight of global parameters
𝛼 is decided automatically by hyperparameter 𝜋 and the number
of workers 𝑛, as explained in Section 3.2 (i.e., 𝛼 = 1 − 1√

𝑛𝜋
). For

a fair evaluation, we apply the memory-wise parameter sharding
(Section 3.3) to all centralized algorithms (i,e., ASP, EASGD, and
ALADDIN) in all experiments.
Hyperparameter setting. We set batch size 𝐵 as 128 for ResNet-
50 and 96 for VGG-16 to fully utilize the GPU memory. We use
momentum SGD and set momentum as 0.9, weight decay factor as
0.0001, and learning rate 𝜂 as 0.01×𝑛 for CIFAR-10 and 0.05×𝑛 for
ImageNet-1K, based on the learning rate scaling rule [10]. We apply
the learning rate warm-up for the first 20 epochs for CIFAR-10 and
first 5 epochs for ImageNet-1K, and decay 𝜂 by 1

10 at epoch 150 for
CIFAR-10 and epoch 30, 60, and 80 for ImageNet-1K [10].

5.2 Convergence Rate
First, we evaluate the model accuracies of all algorithms and their
convergence rate with respect to training epochs and time. We
compare ALADDIN with other algorithms using the following four
metrics: the final test accuracy (Test Acc.), the total training time
(Train time), the test accuracy achieved in the given time (Test Acc.
(𝑥 hrs.)), and time to achieve the given test accuracy (Train time

2https://www.cs.toronto.edu/~kriz/cifar.html
3http://www.image-net.org/
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Table 2: Results for ResNet-50 and VGG-16 on CIFAR-10 and ImageNet-1K.

ResNet-50 (CIFAR-10) VGG-16 (CIFAR-10) ResNet-50 (ImageNet-1k)

Test Acc. Train time Test Acc.(1 hrs.)
Train time

(90%) Test Acc. Train time Test Acc.(2 hrs.)
Train time

(90%) Test Acc. Train time Test Acc.(5 hrs.)
Train time

(60%)

AR-SGD 0.9353 2.37 hrs. 0.8992 0.98 hrs. 0.9238 14.46 hrs. 0.7765 6.40 hrs. 0.7514 20.72 hrs. 0.5344 6.83 hrs.

ASP 0.9315 2.24 hrs. 0.8810 1.16 hrs. 0.9171 10.96 hrs. 0.4973 8.22 hrs. 0.7508 18.82 hrs. 0.4851 7.45 hrs.
EASGD 0.9112 2.21 hrs. 0.8431 1.36 hrs. 0.9124 9.04 hrs. 0.7002 6.18 hrs. 0.7012 17.53 hrs. 0.5589 6.05 hrs.

SGP 0.9340 2.11 hrs. 0.8839 1.15 hrs. 0.9228 6.66 hrs. 0.8247 3.94 hrs. 0.7513 17.42 hrs. 0.5545 6.53 hrs.

ALADDIN 0.9378 1.81 hrs. 0.9071 0.92 hrs. 0.9226 4.97 hrs. 0.8687 2.87 hrs. 0.7508 13.98 hrs. 0.6561 4.62 hrs.
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(a) Time-wise view (b) Epoch-wise view
Figure 4: Training accuracies w.r.t training time (hrs) and epochs for ResNet-50 and VGG-16 on CIFAR-10.

(𝑥%)). Table 2 shows the results of the training for ResNet-50 and
VGG-16 on CIFAR-10 (250 epochs) and ImageNet-1K (90 epochs).

The results demonstrate that (1) ALADDIN finishes its training in
shorter time than all competing algorithms for both models on both
datasets, by 16% to 191%, and (2) the models trained by ALADDIN
converge to high accuracies comparable to or even better than those
of the synchronous algorithm (AR-SGD), the ground truth. In partic-
ular, ALADDIN always achieves the highest accuracy in the given
time and also achieves the given test accuracy in the shortest time.
This result indicates that ALADDIN could be a good choice as a
distributed training algorithm in the time-constraint circumstance.
ALADDIN always outperforms SGP [1], the state-of-the-art algo-
rithm, in the total training time and time-constraint metrics. This
result validates that centralized training could be made to have
training efficiency higher than decentralized training if the PS bot-
tleneck problem is addressed successfully.

For more in-depth evaluation for model convergence of each
algorithm, we also compare the convergence rates of all algorithms
with respect to training time and epochs. Figure 4 shows the results
on the training of ResNet-50 and VGG-16 on CIFAR-10. ALADDIN
outperforms all competing algorithms in terms of the time-wise
convergence rate as shown in Figure 4(a), which is more clearly
shown in the results of the VGG-16 training. This result indicates
that ALADDIN could achieve higher accuracy than other compet-
ing algorithms in the given time. AR-SGD, a synchronous algorithm,
shows the best result in the epoch-wise convergence rate as shown
in Figure 4(b). This is because all workers always have the same
parameters through its parameter synchronization. Thus, they can
train their models in the exactly same direction. ALADDIN shows
the second-best result in the epoch-wise convergence rate. AL-
ADDIN lags behind AR-SGD in the initial phase of the training, but

eventually catches up to AR-SGD. This result is promising, consider-
ing ALADDIN finishes the training in shorter time up to 191% than
AR-SGD. As a result, ALADDIN has a good convergence rate with
respect to both the training time and epochs, which verifies that
ALADDIN successfully addresses the limitations of both centralized
and decentralized training – large communication overhead and
high parameter variance problems – simultaneously as we claimed.

5.3 Scalability
As the number of workers in a distributed cluster increases, the
communication overhead required in distributed training inevitably
increases as well. With the increase of the communication overhead,
the training throughput per unit time of each worker decreases,
which may adversely affect the scalability of distributed training.
Thus, in this experiment, we evaluate the scalability of each dis-
tributed training algorithm with the increasing number of workers.
We measure the training throughput of each algorithm as the num-
ber of workers increases, in the ResNet-50 and VGG-16 training on
CIFAR-10 and ImageNet-1K. Figure 5 shows the results.

ALADDIN provides the best speed-up results for both models and
both datasets. In the computation-intensive ResNet-50 training (thus
low communication overhead), all algorithms show good speed-up
results with the increasing number of workers. However, in the
communication-intensive training with VGG-16 (thus high commu-
nication overhead), both AR-SGD and ASP show poor results. These
results indicate that the synchronization overhead of AR-SGD is
significant in the training of a communication-intensive model, and
the symmetric communication between PS and workers in ASP
causes workers to wait for PS as we claimed in Section 3.1, which
negatively affects the scaling up the training throughput with the
increasing number of workers.
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(a) CIFAR-10 (b) ImageNet-1K
Figure 5: Speed-up results for ResNet-50 and VGG-16 on CIFAR-10 and ImageNet-1K with the increasing number of workers.

SGP, the state-of-the-art decentralized algorithm [1], shows bet-
ter speed-up results than other algorithms except for ALADDIN
in training with both models. This is because SGP aggregates the
training results of workers in a decentralized manner using the
push-sum gossip algorithm [17]. ALADDIN provides speed-up re-
sults up to 34% better than SGP. This is surprising result, considering
that ALADDIN is a centralized training algorithm that has the PS
bottleneck problem in its nature. Therefore, we conclude that our
asymmetric training successfully addresses the problem of high
communication overhead by the PS bottleneck problem.

5.4 Robustness to Heterogeneous Environment
In a heterogeneous environment, there are workers with varying
training speeds, which may adversely affect the model convergence
and training performance of distributed training. For example, the
parameter variance among workers may be increased by slowwork-
ers, which leads to delayed model convergence. Also, the training
performance can be degraded since slow workers cause other work-
ers to wait at communication barriers. Thus, distributed training
algorithms should be evaluated in this aspect. To evaluate AL-
ADDIN in this aspect, we configure one homogeneous and three
heterogeneous clusters: (0) HO: a homogeneous cluster with no
slow worker, (1) HE0: a heterogeneous cluster with a ×2 slower
worker, (2)HE1: a heterogeneous cluster with a ×10 slower worker,
and (3) HE2: a heterogeneous cluster with a ×100 slower worker.

We train the ResNet-50 model using AR-SGD, SGP, and AL-
ADDIN on the four clusters, and measure their accuracies with
respect to the training time. We also measure the speed-up results
of the algorithms when there are 8 workers in the clusters. Figure 6
and Table 3 show the results. Clearly, ALADDIN is most robust to
all heterogeneous clusters in terms of both the model convergence and
training performance. In particular, regardless of the degree of het-
erogeneity, ALADDIN always shows a consistent convergence rate
and best speed-up results. Note that the small loss is inevitable
because of the slow worker. This result indicates that ALADDIN
effectively reduces the parameter variance increased by slow work-
ers, and removes communication barriers in distributed training
on heterogeneous environments.

AR-SGD shows significant degradation in its convergence rate.
This is because AR-SGD is a synchronous algorithm such that work-
ers do not proceed to the next iteration until the slowest worker
finishes its gradient computation at each iteration. The convergence
of SGP is relatively robust to heterogeneous environments, but the
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Figure 6: Accuracies w.r.t train time on hetero clusters.

Table 3: Speed-up results on heterogeneous clusters.

ALADDIN AR-SGD SGP

ResNet VGG ResNet VGG ResNet VGG

HO (×1) 6.70 6.18 5.40 2.03 6.00 4.64

HE0 (×2) 6.30 5.74 3.22 1.46 5.21 4.15
HE1 (×10) 5.95 5.49 0.71 0.62 4.83 3.81
HE2 (×100) 5.87 5.41 0.08 0.07 1.93 1.89

loss is quite large in the HE2 setting with an extremely (×100)
slower worker. This result means that in spite of the decentralized
communication, a very slow worker may slow down the entire
training since the delay from the slow worker is propagated to
other workers step by step via peer-to-peer communication.

5.5 Ablation Study: Updating Strategies
In this experiment, we verify the effectiveness of each updating
strategy (Section 3.2) on the model convergence of ALADDIN. We
compare the following three versions of ALADDIN: (1) ALADDIN-
L1 is asymmetric training with the local self-update, (2) ALADDIN-
L2 is asymmetric training with the local self-update and the PS-
triggered local update, and (3) ALADDIN is with all strategies (i.e.,
the local self-update, PS-triggered local update, and lazy global up-
date). We train ResNet-50 and VGG-16 models on CIFAR-10 using
three versions of ALADDIN and measure their accuracies with re-
spect to training epochs. As shown in Figure 7, ALADDIN converges
to the highest accuracy, while ALADDIN-L1 converges to the low-
est accuracy in both models. These results demonstrate that each
of our updating strategies is effective in improving the convergence
of the model trained by ALADDIN.
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Figure 7: Ablation study: effects of the updating strategies
of ALADDIN on model convergence.

Let us analyze the results more deeply. Interestingly, in the
ResNet-50 training, ALADDIN-L1 achieves higher accuracy than
ALADDIN-L2 before around 50 epochs as shown in Figure 7(a). This
is because mixing the parameters of workers via the PS-triggered
local update rather interferes with the global model convergence
in the beginning of training, where the model of each worker tends
to fluctuate steeply. On the other hand, in ALADDIN-L1 with only
the local self-update, each worker can train its model alone without
any interference from other workers. But, ALADDIN-L2 achieves
much higher accuracy than ALADDIN-L1 in the end. This result
means that, in the training of ALADDIN-L1, the parameter variance
among workers is getting higher and adversely affects the model
convergence eventually. Lastly, ALADDIN always shows the best
accuracy across all training iterations. This result demonstrates
that the lazy global update successfully reduces the variance of
gradients, making the training more reliable even in the beginning
of training as we claimed in Section 3.2. Through this ablation
study, we verify that our strategies for updating local and global
parameters help to speed up the convergence of ALADDIN.

5.6 Hyperparameter Sensitivity: 𝜋
As explained in Section 3.2, hyperparameter 𝜋 controls the period
of PS-triggered local update of each worker. As 𝜋 gets larger, the
training performance increases since each worker trains its model
in more iterations locally without receiving the global parameters
from PS. However, its model convergence may be delayed as the
parameter variance among workers increases as well. Thus, both
model convergence and training performance of ALADDIN are in
tension per 𝜋 . In this experiment, we evaluate the impact of the
period 𝜋 on the model convergence and training performance of
ALADDIN. We compare the accuracies and scalability of ALADDIN
with varying 𝜋 = 1, 2, 4 in the training of ResNet-50 and VGG-16 on
CIFAR-10. As shown in Figure 8(a), the convergence of ALADDIN is
insensitive to 𝜋 , where the model trained by ALADDIN converges at a
consistent rate regardless of 𝜋 . This result indirectly verifies that the
updating strategies of ALADDIN effectively reduce the parameter
variance among workers, despite the large update period 𝜋 . Also,
ALADDIN shows almost linear speed-ups as the number of workers
increases, except for the VGG-16 training with 𝜋 = 1 (Figure 8(b)).
Considering these results of the model convergence and speed-up,
according to 𝜋 , we conclude that ALADDIN is not hyperparameter-
sensitive, achieving almost a linear speed-up with the increasing
number of workers, while maintaining high accuracy.

ALADDIN (𝜋 = 1) ALADDIN (𝜋 = 2) ALADDIN (𝜋 = 4)

0 50 100 150 200
0.4

0.6

0.8

1

# of epochs (ResNet-50)

Tr
ai
n
A
cc
.

0 50 100 150 200
0.4

0.6

0.8

1

# of epochs (ResNet-50)

Tr
ai
n
A
cc
.

0 50 100 150 200
0.4

0.6

0.8

1

# of epochs (VGG-16)

0 50 100 150 200
0.4

0.6

0.8

1

# of epochs (VGG-16)

(a) Convergence with respect to training epochs.

0 1 2 4 8

1
2

4

8

# of workers (ResNet-50)

Sp
ee
du

p

0 1 2 4 8

1
2

4

8

# of workers (VGG-16)

(b) Speed-up results with the increasing number of worekrs.

Figure 8: Sensitivity of model convergence and scalability to
hyperparameter 𝜋 .

6 CONCLUSION
This paper identified the deficiencies of both centralized and de-
centralized training – i.e., large communication overhead and high
parameter variance, and proposed a novel asymmetric centralized
training algorithm, named as ALADDIN that effectively resolves
both problems at the same time. We provided the theoretical analy-
sis for the convergence of ALADDIN, where the model trained by
ALADDIN converges at a consistent rate, 𝑂 ( 1√

𝑛𝑘
), being compa-

rable to those of existing state-of-the-art works. Through compre-
hensive experiments, we showed that models trained by ALADDIN
converge to accuracies, comparable to those of AR-SGD, a synchro-
nous algorithm, within the shortest time, and ALADDIN provides
almost linear speed-up as the number of workers increases in both
computation-intensive and communication-intensive models. Fur-
ther, via the experiments on three heterogeneous environments,
we demonstrated that ALADDIN is robust to heterogeneous envi-
ronments more than existing state-of-the-art algorithms, where the
models trained by ALADDIN converge at a consistent rate regard-
less of the degree of heterogeneity. Finally, we also verified that
each of our updating strategies is effective in speeding up the model
convergence of ALADDIN, and the convergence and scalability of
ALADDIN is insensitive to the hyperparameter 𝜋 .
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