
����������
�������

Citation: Ko, Y.; Kim, S.-W. SHAT: A

Novel Asynchronous Training

Algorithm That Provides Fast Model

Convergence in Distributed Deep

Learning. Appl. Sci. 2022, 12, 292.

https://doi.org/10.3390/app12010292

Academic Editors: Jinho Kim and

Young-ho Park

Received: 3 November 2021

Accepted: 23 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

SHAT: A Novel Asynchronous Training Algorithm That
Provides Fast Model Convergence in Distributed
Deep Learning

Yunyong Ko and Sang-Wook Kim *

Department of Computer Science, Hanyang University, Seoul 04763, Korea; koyunyong@hanyang.ac.kr
* Correspondence: wook@hanyang.ac.kr

Abstract: The recent unprecedented success of deep learning (DL) in various fields is underlied by its
use of large-scale data and models. Training a large-scale deep neural network (DNN) model with
large-scale data, however, is time-consuming. To speed up the training of massive DNN models,
data-parallel distributed training based on the parameter server (PS) has been widely applied. In
general, a synchronous PS-based training suffers from the synchronization overhead, especially
in heterogeneous environments. To reduce the synchronization overhead, asynchronous PS-based
training employs the asynchronous communication between PS and workers so that PS processes
the request of each worker independently without waiting. Despite the performance improvement
of asynchronous training, however, it inevitably incurs the difference among the local models
of workers, where such a difference among workers may cause slower model convergence. Fro
addressing this problem, in this work, we propose a novel asynchronous PS-based training algorithm,
SHAT that considers (1) the scale of distributed training and (2) the heterogeneity among workers
for successfully reducing the difference among the local models of workers. The extensive empirical
evaluation demonstrates that (1) the model trained by SHAT converges to the higher accuracy up
to 5.22% than state-of-the-art algorithms, and (2) the model convergence of SHAT is robust under
various heterogeneous environments.

Keywords: distributed deep learning; data parallelism; PS-based distributed training; heterogeneous
environments

1. Introduction

With the increasing size of training data and models, deep learning (DL) techniques
have successfully solved the problems that traditional AI techniques did not solve well in
various research fields such as computer vision, speech recognition, and natural language
processing. The recent deep neural network (DNN) models often consist of millions to
billions of parameters [1–4]. For instance, VGG-16 [2] is with 138 M parameters, BERT [3]
with 345 M parameters, and GPT-3 [4] with 175 B parameters. Though the great advance
of a computational accelerator such as GPU has dramatically improved the performance
of training DNN models, training such a large model with a large amount of data often
requires days and weeks [3–5].

To speed up such training, data-parallel distributed training based on the parameter server
(PS) framework has been widely adopted [6–11]. Figure 1 shows the architecture of the
PS-based distributed training. In the PS-based distributed training, the training data are
split and distributed into multiple workers, each of which has its local model with the same
DNN architecture. The training process of the PS-based distributed training is as follows:
(1) each worker computes the loss of its local model based on its local data (i.e., forward
pass), (2) each worker computes the gradients based on the loss (i.e., backward pass), (3)
each worker sends its gradients to PS, (4) PS averages the gradients of all workers and
applies the averaged gradients to the global model, and (5) PS synchronizes the models of
all workers by broadcasting the updated global model to them. This process guarantees

Appl. Sci. 2022, 12, 292. https://doi.org/10.3390/app12010292 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12010292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12010292
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12010292?type=check_update&version=1

Appl. Sci. 2022, 12, 292 2 of 14

that all workers always have the exactly same models across the entire training, which
helps to speed up the model convergence.

Data
Local model

Worker 1

Data
Local model

Worker 2

Data
Local model

Worker 3

𝛻𝑤 𝑤’

Parameter server

Global model

Aggregate

Update

Figure 1. The architecture of a distributed training based on the parameter server framework.

While the synchronous PS-based distributed training [12,13], in general, has a good
convergence rate thanks to its model synchronization across all workers, the synchroniza-
tion overhead becomes larger as the number of workers and the size of a model increase,
which may degrade the training performance. According to [14,15], the synchroniza-
tion overhead is more than 70% of the entire training when the VGG-16 model training
with more than 8 workers. This performance issue can be more serious in heterogeneous
environments, where there are workers with different training speeds [16,17].

To reduce the synchronization overhead, a number of distributed training algorithms
adopting asynchronous communication have been studied [6–8,10,11,18,19]. These algo-
rithms aim to improve the training performance by reducing the synchronization overhead
while maintaining the degradation of the model accuracy as small as possible. In general,
the model accuracy and training performance are in a trade-off relationship; that is, reduc-
ing the overhead by asynchronous communication improves the training performance, but
it inevitably results in a significant difference among the local models of workers. Such a
difference can delay the convergence of the global model since the gradients computed from
the local models of different workers may interfere with each other [7,11,14]. In addition,
the difference among the local models of workers tends to become larger as the scale of
distributed training increases (i.e., a larger number of workers), especially in heterogeneous
environments. Therefore, in asynchronous distributed training, it is important to reduce
the difference among the local models of workers by considering the scale of distributed
training and the heterogeneity among workers. However, existing asynchronous training
algorithms [6–10] do not consider the scale of distributed training and the heterogeneity
among workers when they update the local model of each worker. By these limitations,
in large-scale distributed heterogeneous environments, existing asynchronous training
algorithms often have the problem of the delayed model convergence [11,14].

To address the limitations, in this work, we propose a novel approach to asynchronous
PS-based distributed training, the Scale and Heterogeneity aware Asynchronous dis-
tributed Ttraining algorithm (SHAT) that takes into account (1) the scale of distributed
training and (2) the heterogeneity among workers in updating the local model of each
worker, for effectively reducing the difference among the local models of workers in
asynchronous distributed training. We demonstrate that (1) the model trained by SHAT
converges to the higher accuracy up to 5.22% than the existing state-of-the-art algorithms,

Appl. Sci. 2022, 12, 292 3 of 14

and (2) the model convergence of SHAT is robust under various heterogeneous environ-
ments including the cluster with an extremely (×100) slower worker. To the best of our
knowledge, this is the first work to consider the scale of distributed training and the het-
erogeneity among workers at the same time for fast model convergence in asynchronous
training. SHAT can achieve fast model convergence regardless of the scale of distributed
training and the heterogeneity among workers.

The main contributions of this work are as follows:

• Identifying the limitations of existing asynchronous distributed training in updating
local models of workers—i.e., not considering both the scale of distributed training
and the heterogeneity among workers.

• Proposing a novel asynchronous PS-based training algorithm, named as SHAT, suc-
cessfully addressing the limitations of the existing asynchronous distributed training.

• Comprehensive evaluation verifying the effectiveness of SHAT in terms of the conver-
gence rate and robustness under heterogeneous environments.

Organization. The rest of this paper is organized as follow. We describe data-parallel
distributed training in detail and introduce literature related to data-parallel distributed
training in Section 2. Then, we describe the limitations of existing asynchronous distributed
training algorithms and present a novel algorithm for effectively addressing the limitations
in Section 3. We empirically evaluate SHAT in Section 4. Finally, we conclude this paper in
Section 5.

2. Related Work

With the increasing scale of models and data, a large number of studies on dis-
tributed training have been conducted [6–10,15,19–26]. They can be classified into data
parallelism [6–8,10,11] and model parallelism [15,25]. This work focuses on data-parallel
distributed training, where training data are split and distributed into multiple workers,
while all workers have the model with the same DNN architecture. In data-parallel dis-
tributed training, each iteration consists of computation and communication stages. In a
computation stage, a worker trains its local model based on its local data. In a communica-
tion stage, the training results (i.e., gradients) are aggregated via network communication.
For this aggregation, either communication via a dedicated parameter server (PS) (i.e.,
PS-based), or peer-to-peer communication (i.e., P2P-based) can be used. On the other
hand, the communication for the aggregation can be performed either synchronously or
asynchronously. Table 1 shows the existing data-parallel distributed training algorithms.
In this section, we introduce existing distributed training algorithms (i.e., PS-based and
P2P-based) as shown in Table 1, and various techniques for improving distributed training.

Table 1. Existing data-parallel distributed training algorithms.

PS-Based. P2P-Based.

Synchronous. Bulk Synchronous Parallel (BSP) [12] AllReduce-SGD (AR-SGD) [27]

Asynchronous.

Asynchronous Parallel (ASP) [6] Gossip-SGD (GoSGD) [20]
Stale Synchronous Parallel (SSP) [7] Decentralized Parallel SGD (D-PSGD) [21]
Elastic Averaging SGD (EASGD) [8] Asynchronous D-PSGD (AD-PSGD) [22]

Dynamic SSP (DSSP) [9] Stochstic Gradient Push (SGP) [23]

2.1. PS-Based Distributed Training

In PS-based distributed training, a dedicated parameter server (PS) manages the global
parameters by aggregating the training results of workers. In bulk synchronous parallel
(BSP) [12,13], a synchronous centralized algorithm, the parameters of all workers are syn-
chronized via PS that aggregates the gradients from all workers at once. Thus, all workers
train the model in a consistent direction based on the same parameter values. However,
the synchronization overhead can be significant, especially in a heterogeneous cluster,
where some workers have relatively slow training speeds. To reduce the synchronization

Appl. Sci. 2022, 12, 292 4 of 14

overhead, many asynchronous distributed training algorithms [6–9,18,28,29] have been
studied. In asynchronous parallel (ASP) [6], PS aggregates the gradients from workers
in an asynchronous manner: PS does not wait for all workers; instead, PS processes the
gradients from each worker individually. However, the parameter variance among workers
could be large if there are workers with different training speeds, causing global model
convergence delayed. Stale synchronous parallel (SSP) [7], positioned in the middle of
BSP and ASP, relaxes the parameter synchronization by allowing workers to train with
different parameter versions. However, SSP controls the difference among the versions to
be always less than the predefined threshold. Dynamic SSP (DSSP) [9] further improves
SSP by varying the threshold dynamically as training progresses. Elastic averaging SGD
(EASGD) [8] reduces the communication overhead via periodic communication between
PS and workers.

2.2. P2P-Based Distributed Training

In P2P-based distributed training, the training results of workers are aggregated via
peer-to-peer (P2P) communication without PS. In AllReduce-SGD (AR-SGD) [27,30], a syn-
chronous P2P-based distributed algorithm, the parameters of all workers are synchronized
via AllReduce communication at every iteration. The synchronization overhead, however,
can be a big problem like BSP. In decentralized parallel SGD (D-PSGD) [21], each worker
exchanges its parameters with another worker and updates its parameters by averaging
them at every iteration. D-PSGD proved that the convergence rate of P2P-based distributed
training is comparable to that of SGD through the theoretical analysis, which promoted to
study many P2P-based distributed training algorithms. AD-PSGD [22], the asynchronous
version of D-PSGD, improves the training performance of D-PSGD by allowing workers to
communicate with each other asynchronously. The stochastic gradient push (SGP) [23], a
state-of-the-art P2P-based distributed training algorithm, adopts the push-sum gossip algo-
rithm [31] to efficiently aggregate parameter aggregation of workers. To further accelerate
the aggregation, SGP uses a directed exponential graph where a worker communicates with
another worker placed in 2i hops away at iteration i. The Cooperative-SGD [32] proposes a
unified framework for generalizing existing distributed training algorithms and provides
its convergence analysis within the generalized framework, where fully-synchronous SGD
(BSP, AR-SGD), EASGD, and D-PSGD are represented as its special cases. Ref. [33] provides
a general consistency condition that covers existing asynchronous distributed training
algorithms.

2.3. Other Techniques for Distributed Training

For efficient distributed training, many techniques have been studied from various
perspectives. In general, the PS-based distributed training algorithms often suffer from the
problem of PS being a bottleneck because PS aggregates training results from all workers.
To mitigate this problem, parameter sharding [10,29,34] is generally applied to PS-based
distributed training algorithms. This technique divides global parameters and distributes
them into multiple PSs to process them in parallel. On the other hand, To speed up the
model convergence in synchronous distributed training, various methods that control the
learning rate in distributed training have been widely studied [26,27,35–39]. Linear scaling
with warm-up (LSW) [27] uses the linear learning rate scaling rule that linearly increases the
learning rate as the batch size increases, together with the gradual warm-up that gradually
increases the learning rate from a small value. AdaScale SGD [26] further improves large-
batch training by applying more reliable learning rate considering the variance of gradients.
Eshraghi and Liang [17] and Yu et al. [16] consider distributed training over different types
of networks. Distributed any-batch mirror descent (DABMD) [17] speeds up the training
over a heterogeneous network, by varying the batch sizes across workers to minimize the
waiting time by faster workers. Reliable parameter server (RPS) [16] assumes unreliable
networks where the delivery of the messages between workers is not guaranteed. Through
theoretical analysis, Yu et al. [16] shows the convergence rate of the PS-based distributed
training algorithm over unreliable networks is comparable to that of reliable networks.

Appl. Sci. 2022, 12, 292 5 of 14

POSEIDON [10], iBatch [19], G-Pipe [25], and PipeDream [15] were proposed to maximize
the training efficiency by overlapping the computation and communication.

3. The Proposed Method: SHAT
In this work, we consider the following problem:

min
w1,...,wn ,w̃

n

∑
i=1

E[F(wi, xi)] +
ρ

2
||wi − w̃||2, (1)

where n is the number of workers, wi is the local model of worker i, xi is the local data of
worker i, F(wi, xi) is the loss function of the local model wi with data samples xi, and x̃
is the global model. The goal of Equation (1) is twofold: (1) the first term minimizes the
loss function (thus maximizing accuracy) and (2) the second term minimizes the difference
between local and global models (thus preserving the consistency among parameters across
workers). This work aims to achieve both objectives in Equation (1) and successfully train a
DNN model in asynchronous PS-based distributed training.

3.1. Asynchronous Distributed Training

In this section, we review asynchronous distributed training [6,7] and identify the
limitation in updating local models of workers. Figure 2 illustrates the difference between
synchronous and asynchronous distributed training. In synchronous distributed training,
the local models of all workers are synchronized by PS aggregating the gradients from all
workers (see Figure 2a). In each iteration, each worker performs computing operations
(i.e., forward/backward passes), sends its computed gradients to PS, and receives the
updated global model from PS. Then, each worker replaces its local model with the global
model and proceeds to the next training iteration. Here, all workers have the exactly same
model since they receive the same global model from PS at the same time. However, the
synchronization overhead might be quite significant when some workers fall behind other
workers for computing operations (e.g., worker 1 in Figure 2a), which may degrade the
overall training performance significantly.

To improve the performance of synchronous training, asynchronous distributed train-
ing aims to reduce the synchronization overhead by adopting asynchronous communication
between PS and workers. In asynchronous distributed training, PS processes the gradients
from each worker in an asynchronous manner, that is, PS receives the gradients of each
worker, updates the global model using them, and then sends the updated global model
right back to the worker immediately. Thus, each worker can proceed to the next iteration
without waiting for other workers. As clearly illustrated in Figure 2b, in asynchronous
distributed training, there is no synchronization barrier.

However, each worker receives a different version of the global model at a different
point since it communicates with PS independently. Such an inevitable difference would
increase as the scale of distributed training and the heterogeneity among workers get larger,
which would adversely affect the global model convergence (thus, delaying the model
convergence). This is because the gradients computed based on the different local models
of workers lead to different learning directions, that is, the larger the difference among local
models of workers is, the more different directions of gradients are. When the gradients
with different directions are applied to the global model in PS, they are likely to interfere
with each other in the global model convergence [7,11,14]. More specifically, when there is
an extremely slow worker (i.e., straggler) in a distributed cluster, other normal workers
can update the global model many times while the straggler computes its gradient locally.
Thus, the gradient computed by the straggler becomes stale and is highly likely to lead
the global model in PS to the wrong direction. Therefore, it is important to reduce the
difference among local models of workers by accurately considering the scale of distributed
training and the heterogeneity among workers in asynchronous distributed training.

Appl. Sci. 2022, 12, 292 6 of 14

Training progress

Sync. barrierForward

W0

Backward Wait

Iter. t Iter. t+1 Iter. t+2

W1

W2

W3

(a)

Training progress

W0

Forward Backward Async. Comm

Iter. t

W1

W2

W3

Iter. t+1 Iter. t+2 Iter. t+3

(b)

Figure 2. The difference between synchronous and asynchronous distributed training; (a) syn-
chronous distributed training; (b) asynchronous distributed training.

In existing asynchronous distributed training, however, each worker just replaces its
local model with the global model. Thus, when updating the local model of each worker, it
does not consider (1) how many workers are joining in distributed training (i.e., the scale of
distributed training) and (2) their performance difference (i.e., the heterogeneity among
workers), which may cause a serious problem in the model convergence as we explained.
Motivated from these limitations, we propose an update strategy for the local model of
each worker to speed up the model convergence in asynchronous distributed training by
considering the scale of distributed training and the heterogeneity among workers together.

3.2. Update Strategy for Model Convergence

By updating the local model of each worker using the global model, the local models
of all workers could be mixed indirectly through the global model. Thus, we aim to
reduce the difference between the global model and the local model of each worker by
effectively mixing the local models of workers. To this end, inspired by [8,11], we define
the generalized update rule for local model of each worker wi in asynchronous distributed
training, based on the problem formulation represented in Equation (1). By taking the
gradient descent with respect to wi on Equation (1), we get:

wi = wi − η · (gi + ρ(wi − w̃)) (2)

Denote α = η · ρ and wi = wi − η · gi, which can be considered equal to the local parameter
update of worker i. Then, we get the following update rule for wi:

wi = wi − α(wi − w̃)

= (1− α)wi + αw̃ (3)

Equation (3) implies that a worker updates its local model by taking the weighted
average between its local model wi and the global model x̃ where α is an oscillating weight
factor between local and global models. We note that this formulation can generalize
diverse parameter update rules in distributed training. For example, if α = 0, it is the same
as local training only (i.e., ensemble), while, if α = 1, it degenerates to the update method

Appl. Sci. 2022, 12, 292 7 of 14

in existing asynchronous distributed training (e.g., Hogwild [6]), where the local model of
each worker is completely replaced by the global model.

With the generalized update rule represented in Equation (3), we can transform the
problem of asynchronous distributed training to the problem of setting the oscillating
weight factor α. Now, let us describe the update strategy for the local model of each
worker (i.e., how to set α) in SHAT. The proposed update strategy is based on the following
intuition: the less the amount of the gradients of a worker is applied to the global model in
PS, the larger the difference between the local model of the worker and the global model
becomes. By this intuition, the difference may increase more as the number of workers
gets larger (i.e., the larger scale of distributed training) and workers have more different
training speeds (i.e., the larger heterogeneity among workers). Then, we take into account
(1) the scale of distributed training and (2) the heterogeneity among workers in updating
the local model of each worker, for effectively reducing the difference. Given the number
of workers n and the degree of the staleness of each worker si, we set the weight of each
worker αi as follows.

αi = 1− si

log n
, si =

n
ci . (4)

Here, we define the degree of the staleness of each worker as si = n
ci , where ci is

the number of updates by other workers in the global model since the previous update
by worker i has been performed (i.e., si ≈ 1, ci ≈ n in a homogeneous cluster, where all
workers have almost same training speed). Thus, in SHAT, the weight of the global model
for updating the local model of each worker, αi is determined by the scale of distributed
training and the heterogeneity among workers. The weight of the global model increases
with a more number of workers and a less degree of heterogeneity among workers, helping
(1) the local models of workers to be combined more effectively and (2) the local model
of each worker to catch up quickly the learning direction of the global model. We note
that αi is not a hand-tuned hyperparmeter but automatically decided by the number of
workers n and the degree of the staleness of each worker si. As a result, in SHAT, each
worker updates its local model by considering the scale of distributed training and the
heterogeneity among workers (i.e., with the staleness of each worker), not just replacing its
local model by the global model.

In summary, existing asynchronous training algorithms such as ASP [6], SSP [7], and
DSSP [9] mainly focus on improving the training performance (i.e., throughput) via an
asynchronous communication strategy. They adopt a simple update method for a local
model of each worker: the local model of a worker is completely replaced with the global
model (i.e., αi = 1). Thus, the existing asynchronous training algorithms do consider
neither the scale of distributed training nor the heterogeneity among workers when they
update the local model of each worker, which would result in delayed model convergence.
On the other hand, this work aims to speed up the model convergence by reducing the
difference among local models of workers. To this end, we define our generalized update
rule (Equation (3)) for the local model of each worker in asynchronous distributed training
and propose a new update strategy that considers the scale of distributed training and
the heterogeneity among workers together. We will empirically verify the effectiveness of
SHAT on the model convergence in Section 4.

3.3. Algorithm and Performance Consideration

Algorithm 1 shows the whole training process of SHAT. At iteration t, a worker i
computes its gradients gi

t based on the data sampled from X, sends gi
t to PS, and receives

the updated global model w̃ and ci (lines 3–6 in Algorithm 1). Then, the worker updates its
local model using our strategy represented in Equation 4 (lines 7–8 in Algorithm 1). While,
whenever PS receives the gradients gi from each worker, PS computes the degree of the
heterogeneity of the other workers ck(k 6= i) (lines 13–19 in Algorithm 1). Then, PS updates
the global model by applying the received gradients and sends the updated global model

Appl. Sci. 2022, 12, 292 8 of 14

w̃ and the degree of the staleness ck to the worker. We highlight again that in SHAT, each
worker updates its local models by taking into account (1) the scale of distributed training
and (2) the heterogeneity among workers.

Algorithm 1 Training processes of a worker and PS in SHAT

1: Function SHAT_WORKER(w0, X, f , i):
2: for t = 0, 1, . . . do
3: b← sampleBatch(X)
4: gi

t ← 1
|b| ∑x∈b∇F(wt, x)

5: sendGradientsToPS(gi
t)

6: w̃, ci ← receiveModelFromPS()
7: αi ← 1− si

log n , si ← n
ci // Scale and heterogeneity aware strategy

8: wi ← (1− αi)wi + αiw̃ // Generalized update rule
9: end for

10: Function SHAT_PS(n, η):
11: C ← {0, 0, . . . , 0}, C ∈ Nn

12: ci ∈ C
13: for s = 0.1, . . . do
14: Receive gi from worker i
15: gi ← receiveGradientFromWorker()
16: for k = 0, 1, . . . , n− 1 do // Computing the staleness of each worker
17: if k 6= i then
18: ck ← ck + 1
19: end if
20: end for
21: w̃← w̃− η · gi

22: sendUpdateModelToWorker(w̃, ci)
23: ci ← 0
24: end for
25: return w̃

In PS-based distributed training, PS may become the bottleneck of the entire training
since a single PS is in charge of aggregating the training results (i.e., gradients) from all
workers and sending back the updated global model to each worker. To alleviate this
problem, parameter sharding [10,28,29,34,40] is generally applied to PS-based distributed
training. Parameter sharding divides the parameters in the global model and distributes
them into multiple PSs to process them in parallel as illustrated in Figure 3. Via parameter
sharding, the communication and computation overhead are distributed to multiple PSs,
thus improving the overall training performance.

Layerwise parameter sharing is normally used because a layer is represented as a
single data structure in many DNN frameworks (e.g., Tensor in Tensorflow) so that it
can be processed sequentially, which means that the parameters in the same layer are
stored in the same PS. In some DNN models, however, a single layer may contain the
majority of the entire model parameters. For instance, in the VGG-16 model [2], the last
two fully-connected layers are in charge of more than 90% of all parameters. In this case,
the PS in charge of the extremely large layers suffers from a big burden, thereby becoming
a bottleneck in the overall training. To address this issue, we apply memorywise parameter
sharding to SHAT. Memorywise sharding defines the maximum size of sharded parameters
and has multiple PSs process the parameters in a layer together if it is larger than the
maximum size.

Appl. Sci. 2022, 12, 292 9 of 14

Data
Local model

Worker 1

Data
Local model

Worker 2

Data
Local model

Worker 3

𝛻𝑤 𝑤’

Parameter server 1

Global model

Aggregate

Update

Parameter server 2

Global model

Aggregate

Update

Figure 3. Parameter sharding.

4. Experimental Validation

In this section, we evaluate SHAT by answering the following evaluation questions:

• EQ1. Does the model trained by SHAT achieve the accuracy higher than those of the
state-of-the-art methods?

• RQ2. How robust is SHAT to various heterogeneous environments in terms of the
model convergence?

• RQ3. How effective are parameter sharding techniques on SHAT in terms of training
performance?

4.1. Experimental Setup
4.1.1. Datasets and Models

We evaluate SHAT with two widely used CNN models, ResNet-50 [1] and VGG-
16 [2]. ResNet-50 with 23 M parameters is a computation-intensive model, while VGG-16
with 138 M parameters is a communication-intensive model. As the training datasets for
both models, we use the CIFAR dataset that consists of 50 K training images and 10 K
test images with 10 labels (https://www.cs.toronto.edu/~kriz/cifar.html, accessed on 22
December 2021).

4.1.2. Competing Methods

We compare SHAT with the following three baseline methods, including the two
existing asynchronous PS-based training methods and a variation of SHAT.

• ASP (i.e., HOGWILD) [6]: this baseline is a widely-recognized data-parallel distributed
training method, where each worker updates its local model by replacement with the
global model (i.e., α = 1).

• ENSEMBLE: this baseline is an ensemble learning method, where each worker trains
its local model only locally without receiving the global model (i.e., α = 0).

• SHATRoot: this baseline is a variation of SHAT with αi = 1− hi
√

n for each worker.

• SHAT: this method is the original version of SHAT, the asynchronous PS-based training

with αi = 1− hi

log n for each worker.

4.1.3. Hyperparameter Settings

We set batch size B as 128 for ResNet-50 and 96 for VGG-16 to fully utilize the GPU
memory. We use momentum SGD and set momentum as 0.9, weight decay factor as 0.0001,
and learning rate η as 0.01× n for CIFAR-10, based on the learning rate scaling rule [27].

https://www.cs.toronto.edu/~kriz/cifar.html

Appl. Sci. 2022, 12, 292 10 of 14

We apply the learning rate warm-up for the first 20 epochs for the CIFAR dataset, and decay
η by 1

10 at epoch 150 for CIFAR-10.

4.1.4. System Configuration

We use TensorFlow 1.15 and MPICH 3.1.4 to implement all algorithms including SHAT
on Ubuntu 18.04 OS. We evaluate SHAT on the cluster with four machines, where each
machine has two NVIDIA RTX 2080 Ti GPUs and an Intel i7-9700k CPU with 64 GB memory.
All machines are interconnected by 10 Gbps Ethernet (Mellanox ConnectX-4Lx).

4.2. EQ1. Model Accuracy and Convergnece

First, we evaluate the model accuracies of all competing methods. We train ResNet-50
and VGG-16 on CIFAR-10 (250 epochs) using all competing methods and measure Top-1
test accuracy (%). Table 2 shows the results. The results demonstrate that the models trained
by SHAT converge to higher accuracies than those of the baseline methods. In particular,
SHAT achieves the higher accuracy up to 5.22% than the existing asynchronous distributed
training (i.e., ASP). This result implies that SHAT successfully reduces the difference among
the local models of workers in asynchronous distributed training.

Table 2. The model accuracy of asynchronous training with different update methods.

Competing Methods

Model # of Workers ENSEMBLE ASP SHATRoot SHAT
(α = 0) (α = 1) (αi = 1− hi

√
n
) (αi = 1− hi

log n)

ResNet-50 [1]

2 0.9319 0.9332 0.9384 0.9399
4 0.9112 0.9315 0.9329 0.9382
8 0.8910 0.9182 0.9293 0.9311

16 0.8491 0.9019 0.9113 0.9311

VGG-16 [2]

2 0.9012 0.9209 0.9242 0.9238
4 0.8821 0.9171 0.9223 0.9228
8 0.8247 0.9071 0.9128 0.9226

16 0.7002 0.8687 0.9081 0.9209

For more in-depth evaluation for model convergence of SHAT, we also measure the
model accuracy of SHAT and ASP in terms of training epochs, with varying the number
of workers n. Figure 4 shows the results on the training of ResNet-50 and VGG-16 on
CIFAR-10, where the x-axis represents the training epoch and the y-axis represents the
top-1 accuracy. SHAT always outperforms ASP in terms of the epochwise convergence
rate, and the gap between SHAT and ASP tends to become larger as the number of workers
increases. This is because the update strategy of SHAT carefully considers the scale of
distributed training (i.e., log n in Equation (4)), and then update the local model of each
worker precisely based on them. As a result, SHAT successfully improves the model
convergence of asynchronous distributed training, which verifies that SHAT successfully
addresses one of the limitations of the existing asynchronous distributed training—i.e., not
considering the scale of distributed training—as we claimed.

4.3. EQ2. Robustness to Heterogeneous Environments

In a heterogeneous environment, there are workers with varying training speeds,
which may adversely affect the model convergence of asynchronous distributed training.
For example, when there are a few workers with slow training speeds, the gradients
computed from the slow workers (i.e., staled gradients) are highly likely to cause the global
model to be learned in a wrong direction, thereby delaying the model convergence. Thus,
distributed training algorithms should be evaluated in this aspect. To evaluate SHAT in
this aspect, we configure one homogeneous and three heterogeneous clusters: (1) HO: a
homogeneous cluster with no slow workers, (2) HE0: a heterogeneous cluster with a ×2

Appl. Sci. 2022, 12, 292 11 of 14

slower worker, (3) HE1: a heterogeneous cluster with a ×10 slower worker, and (4) HE2:
a heterogeneous cluster with a ×100 slower worker. We train the ResNet-50 model using
SHAT on the four clusters, and measure their accuracies with respect to the training time.
Figure 5 shows the results, where the x-axis represents the training time and the y-axis
represents the top-1 accuracy. Clearly, SHAT is quite robust to all heterogeneous clusters in
terms of the model convergence. In particular, regardless of the degree of heterogeneity, SHAT
always shows a consistent convergence rate. Note that the small loss is inevitable because
of the slow worker. This result indicates that SHAT effectively reduces the difference among
the local models of workers, by considering the heterogeneity among workers (i.e., the
staleness of each worker ci).

n = 1 n = 2 n = 4 n = 8 n = 16

0 50 100 150 200

60

70

80

90

100

Training epochs

To
p-

1
A

cc
ur

ac
y

(%
)

(a)

0 50 100 150 200

60

70

80

90

100

Training epochs

To
p-

1
A

cc
ur

ac
y

(%
)

(b)
Figure 4. Comparison of convergence rate with respect to training epochs for ResNet-50 on CIFAR-10;
(a) ASP (α = 1); (b) SHAT (αi = 1− hi

log n).

HO (×1) HE0 (×2) HE1 (×10) HE2 (×100)

0 0.5 1 1.5

70

80

90

100

Training time (hours)

To
p-

1
A

cc
ur

ac
y

(%
)

(a)

0 1 2 3 4

70

80

90

100

Training time (hours)

To
p-

1
A

cc
ur

ac
y

(%
)

(b)
Figure 5. Convergence rate of SHAT under three different heterogeneous clusters; (a) ResNet-50;
(b) VGG-16.

4.4. EQ3. Effects of Parameter Sharding

As the number of workers in a distributed cluster increases, the communication
overhead required in distributed training inevitably increases as well. With the increase
of the communication overhead, the training throughput per unit time of each worker
decreases, which may adversely affect the training performance of the entire distributed
training. To efficiently process the communication overhead, as explained in Section 3.3,
we apply the parameter sharding technique to SHAT. In this experiment, we evaluate

Appl. Sci. 2022, 12, 292 12 of 14

the scalability of SHAT with the increasing number of workers and the effectiveness of
parameter sharding techniques. We compare the following three versions of SHAT. (1) No-
sharding: SHAT without parameter sharding, where a single PS processes all parameters
in the training model; (2) Layerwise: SHAT with the layerwise parameter sharding, where
four PSs are in charge of the same number of layers (but different numbers of parameters).
(3) Memorywise: SHAT with the memorywise parameter sharding, where four PSs are in
charge of the same number of parameters. We measure the training throughput of each
method with numbers of workers, in the ResNet-50 and VGG-16 training on CIFAR-10.
Figure 6 shows the results, where the x-axis represents the number of workers and the
y-axis represents the speedup results.

Clearly, for both models, the memorywise parameter sharding improves the training
throughput of SHAT the most. This indicates that the memory-wise parameter sharding
successfully splits large layers and distributes sharded parameters to PSs evenly, which
helps to mitigate the PS bottleneck problem. In the case of the ResNet-50 training, the
layerwise sharding improves the training throughput of SHAT well. This is because the
numbers of parameters are similar to each other across layers in ResNet-50. On the other
hand, in the case of the VGG-16 training, the layerwise sharding rarely improves the
training performance since a few layers have more than 90% of all parameters which leads
to the problem of PS being a bottleneck.

No-sharding Layerwise Memorywise

0 1 2 4 8

1
2

4

8

Sp
ee

du
p

(a)

0 1 2 4 8

1
2

4

8

(b)
Figure 6. Effects of parameter sharding techniques on the training performance of SHAT; (a) ResNet-
50; (b) VGG-16.

5. Conclusions

In asynchronous distributed training, for achieving the fast model convergence, it
is critical to reduce the difference among local models of workers by considering the
scale of distributed training and the heterogeneity among workers. This paper identified
the limitations of existing asynchronous distributed training—i.e., not considering the
scale of distributed training and the heterogeneity among workers, and proposed a novel
asynchronous PS-based distributed training algorithm, named as SHAT that successfully
addresses the limitations simultaneously. We defined the generalized update rule for
the local model of each worker in asynchronous distributed training, and suggested a
reasonable and intuitive strategy for updating the local model of each worker. Through
comprehensive experiments, we showed that the models trained by SHAT converge to
higher accuracies than the state-of-the-art methods. Furthermore, via the experiments
on three heterogeneous environments, we demonstrated that the model convergence of
SHAT is robust under various heterogeneous environments, where the models trained by
SHAT converge at a consistent rate regardless of the degree of heterogeneity. Finally, we
also verified that the memorywise parameter sharding effectively improves the training
performance of SHAT in both computation-intensive and communication-intensive models.
When we consider that real-world distributed systems generally consist of a large number

Appl. Sci. 2022, 12, 292 13 of 14

of heterogeneous workers, SHAT could be a good solution to scalable distributed training
in practice. In order to strengthen the credibility of this work, in future work, we plan
to conduct additional experiments using larger models/datasets or different types of
models/datasets.

Author Contributions: Conceptualization, Y.K. and S.-W.K.; methodology, Y.K.; software, Y.K.; vali-
dation, Y.K.; formal analysis, Y.K. and S.-W.K.; investigation, Y.K.; writing—original draft preparation,
Y.K. and S.-W.K.; writing—review and editing, Y.K. and S.-W.K.; supervision, S.-W.K.; project admin-
istration, S.-W.K.; funding acquisition, S.-W.K. All authors have read and agreed to the published
version of the manuscript.

Funding: The work was supported by the National Research Foundation of Korea (NRF) under
Project Number 2020R1A2B5B03001960 and Institute of Information & Communications Technology
Planning & Evaluation (IITP) under Project Number 2020-0-01373.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegasm, NV, USA, 26 June–1 July 2016; pp. 770–778.
2. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the

International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
3. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
4. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.
5. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
6. Recht, B.; Re, C.; Wright, S.; Niu, F. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Proceedings of

the Advances in Neural Information Processing Systems (NIPS), Granada, Spain, 12–14 December 2011; pp. 693–701.
7. Ho, Q.; Cipar, J.; Cui, H.; Lee, S.; Kim, J.K.; Gibbons, P.B.; Gibson, G.A.; Ganger, G.; Xing, E.P. More effective distributed ml via a

stale synchronous parallel parameter server. In Proceedings of the Advances in Neural Information Processing Systems, Tahoe,
NV, USA, 5–10 December 2013; pp. 1223–1231.

8. Zhang, S.; Choromanska, A.E.; LeCun, Y. Deep learning with elastic averaging SGD. In Proceedings of the Advances in Neural
Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 685–693.

9. Zhao, X.; An, A.; Liu, J.; Chen, B.X. Dynamic stale synchronous parallel distributed training for deep learning. In Proceedings of
the IEEE International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–9 July 2019; pp. 1507–1517.

10. Zhang, H.; Zheng, Z.; Xu, S.; Dai, W.; Ho, Q.; Liang, X.; Hu, Z.; Wei, J.; Xie, P.; Xing, E.P. Poseidon: An Efficient Communication
Architecture for Distributed Deep Learning on GPU Clusters. In Proceedings of the USENIX Annual Technical Conference (ATC),
Santa Clara, CA, USA, 12–14 July 2017; pp. 181–193.

11. Ko, Y.; Choi, K.; Jei, H.; Lee, D.; Kim, S.W. ALADDIN: Asymmetric Centralized Training for Distributed Deep Learning. In
Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), Gold Coast, QLD,
Australia, 1–5 November 2021.

12. Gerbessiotis, A.V.; Valiant, L.G. Direct bulk-synchronous parallel algorithms. J. Parallel Distrib. Comput. 1994, 22, 251–267.
[CrossRef]

13. Zhao, X.; Papagelis, M.; An, A.; Chen, B.X.; Liu, J.; Hu, Y. Elastic Bulk Synchronous Parallel Model for Distributed Deep Learning.
In Proceedings of the IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; pp. 1504–1509.

14. Ko, Y.; Choi, K.; Seo, J.; Kim, S.W. An In-Depth Analysis of Distributed Training of Deep Neural Networks. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS), Portland, OR, USA, 17–21 May 2021; pp. 994–1003.

15. Narayanan, D.; Harlap, A.; Phanishayee, A.; Seshadri, V.; Devanur, N.R.; Ganger, G.R.; Gibbons, P.B.; Zaharia, M. PipeDream:
generalized pipeline parallelism for DNN training. In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), Huntsville, ON, Canada, 27–30 October 2019; pp. 1–15.

16. Yu, C.; Tang, H.; Renggli, C.; Kassing, S.; Singla, A.; Alistarh, D.; Zhang, C.; Liu, J. Distributed learning over unreliable
networks. In Proceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019;
pp. 7202–7212.

17. Eshraghi, N.; Liang, B. Distributed Online Optimization over a Heterogeneous Network with Any-Batch Mirror Descent. In
Proceedings of the International Conference on Machine Learning (ICML), Online, 13–18 July 2020; pp. 2933–2942.

18. Zhou, Z.; Mertikopoulos, P.; Bambos, N.; Glynn, P.; Ye, Y.; Li, L.J.; Fei-Fei, L. Distributed Asynchronous Optimization with
Unbounded Delays: How Slow Can You Go? In Proceedings of the International Conference on Machine Learning (ICML),
Stockholm, Sweden, 10–15 July 2018; pp. 5970–5979.

http://doi.org/10.1006/jpdc.1994.1085

Appl. Sci. 2022, 12, 292 14 of 14

19. Wang, S.; Pi, A.; Zhou, X. Scalable distributed dl training: Batching communication and computation. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), New York, NY, USA, 7–12 February 2019; Volume 33, pp. 5289–5296.

20. Blot, M.; Picard, D.; Cord, M.; Thome, N. Gossip training for deep learning. In Proceedings of the Advances in Neural Information
Processing Systems Workshop on Optimization for Machine Learning, Barcelona, Spain, 5–10 December 2016.

21. Lian, X.; Zhang, C.; Zhang, H.; Hsieh, C.J.; Zhang, W.; Liu, J. Can decentralized algorithms outperform centralized algorithms?
a case study for decentralized parallel stochastic gradient descent. In Proceedings of the Advances in Neural Information
Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5330–5340.

22. Lian, X.; Zhang, W.; Zhang, C.; Liu, J. Asynchronous decentralized parallel stochastic gradient descent. In Proceedings of the
International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 3049–3058.

23. Assran, M.; Loizou, N.; Ballas, N.; Rabbat, M. Stochastic gradient push for distributed deep learning. In Proceedings of the
International Conference on Machine Learning (ICML), Long Beach, CA, USA, 9–15 June 2019; pp. 344–353.

24. Li, Y.; Yu, M.; Li, S.; Avestimehr, S.; Kim, N.S.; Schwing, A. Pipe-SGD: A decentralized pipelined SGD framework for distributed
deep net training. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Montreal,
QC, Canada, 3–8 December 2018; pp. 8056–8067.

25. Huang, Y.; Cheng, Y.; Bapna, A.; Firat, O.; Chen, D.; Chen, M.; Lee, H.; Ngiam, J.; Le, Q.V.; Wu, Y.; et al. Gpipe: Efficient training
of giant neural networks using pipeline parallelism. In Proceedings of the Advances in Neural Information Processing Systems,
Vancouver, BC, Canada, 8–14 December 2019; pp. 103–112.

26. Johnson, T.; Agrawal, P.; Gu, H.; Guestrin, C. AdaScale SGD: A User-Friendly Algorithm for Distributed Training. In Proceedings
of the International Conference on Machine Learning (ICML), Vienna, Austria, 12–18 July 2020; pp. 4911–4920.

27. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.02677.

28. Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Senior, A.; Tucker, P.; Yang, K.; Le, Q.V.; et al. Large scale
distributed deep networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1223–1231.

29. Jiang, J.; Cui, B.; Zhang, C.; Yu, L. Heterogeneity-aware distributed parameter servers. In Proceedings of the ACM International
Conference on Management of Data, (SIGMOD), Chicago, IL, USA, 14–19 May 2017; pp. 463–478.

30. Sergeev, A.; Balso, M.D. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv 2018, arXiv:1802.05799.
31. Kempe, D.; Dobra, A.; Gehrke, J. Gossip-based computation of aggregate information. In Proceedings of the IEEE Symposium on

Foundations of Computer Science (FOCS), Cambridge, MA, USA, 11–14 October 2003; pp. 482–491.
32. Wang, J.; Joshi, G. Cooperative SGD: A unified framework for the design and analysis of communication-efficient SGD algorithms.

arXiv 2018, arXiv:1808.07576.
33. Nadiradze, G.; Markov, I.; Chatterjee, B.; Kungurtsev, V.; Alistarh, D. Elastic Consistency: A Practical Consistency Model for

Distributed Stochastic Gradient Descent. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Conference,
2–9 February 2021.

34. Chilimbi, T.; Suzue, Y.; Apacible, J.; Kalyanaraman, K. Project adam: Building an efficient and scalable deep learning training
system. In Proceedings of the Symposium on Operating Systems Design and Implementation (OSDI), Broomfield, CO, USA, 6–8
October 2014; pp. 571–582.

35. You, Y.; Gitman, I.; Ginsburg, B. Large batch training of convolutional networks. arXiv 2017, arXiv:1708.03888.
36. You, Y.; Li, J.; Reddi, S.; Hseu, J.; Kumar, S.; Bhojanapalli, S.; Song, X.; Demmel, J.; Keutzer, K.; Hsieh, C.J. Large batch optimization

for deep learning: Training bert in 76 minutes. arXiv 2019, arXiv:1904.00962.
37. You, Y.; Hseu, J.; Ying, C.; Demmel, J.; Keutzer, K.; Hsieh, C.J. Large-batch training for LSTM and beyond. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Denver, CO, USA, 17–19
November 2019; pp. 1–16.

38. Huo, Z.; Gu, B.; Huang, H. Large batch training does not need warmup. arXiv 2020, arXiv:2002.01576.
39. Smith, S.L.; Kindermans, P.J.; Ying, C.; Le, Q.V. Don’t Decay the Learning Rate, Increase the Batch Size. In Proceedings of

International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.
40. Cui, H.; Zhang, H.; Ganger, G.R.; Gibbons, P.B.; Xing, E.P. Geeps: Scalable deep learning on distributed gpus with a gpu-

specialized parameter server. In Proceedings of the European Conference on Computer Systems (EUROSYS), London, UK, 18–21
April 2016; p. 4.

	Introduction
	Related Work
	PS-Based Distributed Training
	P2P-Based Distributed Training
	Other Techniques for Distributed Training

	The Proposed Method: SHAT
	Asynchronous Distributed Training
	Update Strategy for Model Convergence
	Algorithm and Performance Consideration

	Experimental Validation
	Experimental Setup
	Datasets and Models
	Competing Methods
	Hyperparameter Settings
	System Configuration

	EQ1. Model Accuracy and Convergnece
	EQ2. Robustness to Heterogeneous Environments
	EQ3. Effects of Parameter Sharding

	Conclusions
	References

